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1 Introduction

Anyone acquainted with modern empirical science recognises its reliance on
statistical tools and methods. Statistics is used in fields ranging from sociol-
ogy and economics, to biology and physics. Political decisions are made on
the basis of the likely value of a coefficient in a statistical model; the team
of CERN-researchers that discovered the Higgs boson used statistical tools
familiar to anyone with an introductory course in hypothesis testing.

The importance of statistics stems from many factors, one of which is its
claim to objectivity. In this essay I will explain how this strive for objec-
tivity might be at odds with another scientific desideratum, namely that of
rationality, and vice versa. The point is that in order to make inductive in-
ferences in a rational manner, one ought to (A) use methods that do not lead
to contradictions, and (B), use methods that minimise the distance between
ones beliefs and the true state of nature. (A) is a problem in the foundations
of statistics, a problem which Hacking (1965, p. 1) defines as

[. . . ] to state a set of principles which entail the validity of all
correct statistical inference, and which do not imply that any
fallacious inference is valid.

(B) is a problem of decision theory, which is the theory of how to make,
evaluate and compare decisions. What I hope this essay makes clear, is that
presently, Bayesian statistics which satisfies (A) and (B) is not regarded as
objective, and frequentist statistics, which is regarded as objective, does not
satisfy (A) nor (B).

Before we plunge deeper into these problems, we first have to agree on
what a statistical model is. This topic is treated in Section 2. In sections 2.1

1I have written about these things before in the student journal Filosofisk supplement,
and some sections and examples in the current essay are adopted from that text. See
Stoltenberg (2017).

2emilas@math.uio.no

1



and 2.2 I define what is meant by the terms ’objectivity’ and ’rationality’, as
used in this essay. Section 3 provides an outline of the methods associated
with the dominating school of statistics, known as frequentism.

In the spirit of problem (A), Section 4 argues for two principles that should
be obeyed when making inductive inferences about the true state of nature,
and examples intended to make these two principles intuitively obvious are
presented. In this section it is also shown that the frequentist approach to
statistics, which is often regarded as an objective approach, does not obey
these two principles. An approach to statistics that is in accordance with
the likelihood principle is the approach based on Bayes’ theorem. Section
5 contains a brief introduction to Bayesian statistics, and explains why this
approach does obey the likelihood principle. This section also provides exam-
ples of the challenges posed by the subjective element of Bayesian analyses.
Section 6 summarises the arguments leading to the seeming incompatibility
of rationality and objectivity. A tentative, and perhaps somewhat dispiriting,
solution to this problem is presented.

Two more things are worth mentioning before we start. First, in this
essay I only enter into problems in the foundations of probability as far as
these are of direct relevance for the foundations of statistics. Second, this
essay is about normative issues. It is concerned with how human beings
ought to behave, and not how people actually do behave.

2 Models, objectivity and rationality

It is decided that a coin is to be tossed 12 times, and the results are recorded,

T T T T H T H T T H H T. (1)

The tosses are independent,3 and the probability of the coin showing heads
in a single toss is a number between 0 and 1. As an example, what we call
a fair coin has probability 1/2 of showing heads in a single toss. We do not
know whether the coin flipped above is fair or not, and we may therefore
denote the probability of this coin showing heads by the symbol θ. Apart
from the fact that θ is a number between 0 and 1, it is an unknown quantity.
On the other hand, if we magically knew the value of θ, the probability of
obtaining 4 heads in 12 tosses, as in the sequence above, could be computed
via the formula,

Pr(#heads = x | θ) =

�

n

x

�

θx (1− θ)n−x, (2)

3The independence assumption is not as innocent as it may appear, see O’Neill (2009).
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where Pr(·) denotes the probability of the event inside the parentheses, the
vertical bar ‘|’ reads ‘given that’, n is the number of tosses, and x a generic
element of the set of possible outcomes,

{0, 1, 2, · · · , n}.

The formula in (2), combined with the fact that 0 ≤ θ ≤ 1, is an example of
a statistical model. A prototypical statistical task in this example is to make
an inference about θ based on the 12 coins tosses above.

In Section 3 I get back to this example, and outline how a frequentist
statistician goes about testing the hypothesis of a coin being fair. But first,
I need to clarify what I mean by objectivity and rationality.

2.1 Objectivity

The question in this section is not whether there exists an objective truth
out there. It does. The question is rather how a synthetic proposition4

comes to gain the status of being objective. Drawing on Sprenger (2017),
I distinguish between two, not mutually exclusive, forms of objectivity of
particular relevance for the topic of this essay.

Procedural objectivity : Experiments, data gathering and coding of data
are carried out according to strict protocols and procedures. The point here
is that two researchers who carry out the same experiment, gather the data in
the same manner, and follow the same procedure of coding, obtain data with
the same characteristics. What has become known as the ‘replicability crisis’
in science, where scientists are unable to reproduce the results of scientific
studies, may in part be caused by a lack of procedural objectivity.

Concordant objectivity : Members of a research community agree on the
correctness of a model for some natural phenomenon. This type of objectivity
is purely factual (it is a fact that the researchers do agree), and does not
concern the way the given research community reaches this consensus.

As an example consider the discovery of the Higgs boson in 2012. The
researchers at CERN reasoned that the experimental results they obtained
from the Large Hadron Collider deviated from what one would expect under
the assumption that the Higgs boson does not exist, to such an extent that
they stopped believing in this hypothesis (Sprenger, 2016). To my knowledge
no one has questioned this finding, which must mean that the large majority

4I rely on the distinction between analytic and synthetic propositions as defined by
Ayer. According to Ayer (1952, p. 78) ‘a proposition is analytic when its validity depends
solely on the definition of the symbols it contains, and synthetic when its validity is
determined by the facts of experience.’
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of (if not all) physicists agree that the model of the universe that did not
include the Higgs boson (the model that was rejected), was indeed the correct
one for such a universe.

2.2 Rationality and subjectivity

In order not to get bogged down in details,5 I adopt I.J. Good’s (1952)
principle of rationality.

Principle of rational behaviour : The recommandation always to
behave so as to maximize expected utility.

Elster (2010b, p. 30) defines rationality as consisting of three operations of
optimisation, all three of which, I argue, are encapsulated by Good’s princi-
ple.6 The reason for including them here is that they might be more intuitive
and do not require the notion of expected utility. They are:

(i) Instrumental rationality : Choosing the action that best realises one’s
preferences, given one’s beliefs about the world;

(ii) Epistemic rationality : The art of achieving accurate beliefs about re-
ality, given the information at hand;

(iii) Optimal acquisition of information: Investing, if necessary, in the col-
lection of more information, until the cost of acquiring more informa-
tion equals the expected profit of having more information.

When it comes to these three aspects of rationality, there is some philo-
sophical debate about whether epistemic rationality is just one form of in-
strumental rationality, in which knowledge and truth are goals in themselves.
Kelly (2003) and Yudkowsky (2009) defend such a view. Yet another debate,
with particular importance for economics and social science, concerns the
explicative power of the theory of rationality summarised in (i), (ii) and (iii).
Elster (2010a,b) provides a critical contribution to this debate.

In this essay these debates will not concern us. The latter debate because
we are only interested in rationality as a normative theory, not an explicative
one. As for the former debate, I argue that Good’s principle is violated if
one or more of (i), (ii) or (iii) do not hold. It does then not matter whether
or not (ii) is included in (i).

5The details I think of here involve foundational constructions of probability and de-
cision theory, as given in for example Savage (1972), Bernardo and Smith (1994), and in
Berger (1985).

6I.J. Good (1967) argued that (iii) follows from his principle of rationality.
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With Good’s principle at hand, we can determine whether a statistical
method deserves the epithet rational or not. In the remainder of this section
I argue, by way of example, that using only the empirical average to make a
guess about an unknown probability, can fail to be rational.

Let us now formalise the notion of epistemic rationality in the context
of coin tossing. In the sentence ‘accurate beliefs about reality’, the word
‘reality’ refers to the unknown parameter θ, which is the probability of heads
in one toss. By ‘beliefs’ we will understand a procedure for making a decision
about θ based on data, and denote it by δ, or δ(data) to stress when it is a
function of the data. An example of such a procedure is: ‘take the average
number of heads’,7 that is

δ =
#heads

#tosses
. (3)

According to the definition, a rational agent seeks to make δ as accurate
for θ as possible. By this we understand that the distance between δ and θ
should be minimised, and by ‘distance’ we think of some function of δ and θ
that takes the value 0 when our beliefs are in complete correspondence with
reality, that is δ = θ, and takes positive values if this is not the case. In the
field of statistical decision theory, such a function is called a loss function
and is typically denoted by L. A very common loss function is the squared
error loss function,8

L(δ, θ) = (δ − θ)2.

Since we decide on the decision procedure before the experiment is con-
ducted, L(δ, θ) depends on the data and is random. Interest is therefore in
the expected loss function, called the risk function, which is the hypothetical
average of the loss function in infinitely many trials. We write

Rδ(θ) = EL(δ(data), θ),

for this function, where E stands for ‘expectation’ or hypothetical average.
The risk Rδ(θ), is a function of reality θ, with the decision procedure δ held
fixed. Note that the risk function is just the negative of a utility function, so
minimisation of Rδ(θ) is just what Good’s Principle of Rationality prescribes.

Since we aspire to rationality, the challenge is to choose a decision pro-
cedure δ that minimises the risk. We should not expect to find a decision

7In light of how late in history human beings understood that averages had something
going for them (see Stigler (2016) for a historical account), it is interesting to note that
today averages are so familiar to us that one often confounds them with the truth itself.

8That this loss function is common and mathematically convenient, does not mean that
one should stop thinking about the choice of loss function. The loss function ought to be
suited to the particular problem at hand. A symmetric loss function might for example
be a very unfortunate choice for a Dutch dike engineer.
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Figure 1: Three risk functions.

procedure that performs better than all other decision procedures no matter
what reality is, that would be too much to ask. Rather, we should be happy
if we can find a decision procedure that performs well for values of θ that we
find likely.

In Figure 1 I have plotted the risk function (the solid line) of the decision
procedure given in (3) (i.e. the average) along with the risk functions of two
other decision procedures. More on these shortly.

We see that on average the distance between δ and θ is very small if
the truth happens to be close to 0 or 1, and increasing as θ approaches 1/2
(from both sides), with a maximum in θ = 1/2. This is worrying! No more
than a primitive understanding of the physical laws tells us, just by looking
at a coin, that the probability of heads ought to be somewhere close to 1/2.
Therefore it is discomforting that our decision procedure is the furthest away
from reality in the area where we have strong reasons to believe that reality
is located.

To remedy this we might try to incorporate our hunch about θ into the
decision procedure. One way of doing this is by letting the decision procedure
be a weighted combination of such a prior hunch and the data. Consider

δ = w
1

2
+ (1− w)

#heads

#tosses
, (4)

where the weight w is a number between 0 and 1. By choosing w close to 1, we
put a lot of weight on our hunch, while values of w closer to zero corresponds
to less confidence in our guess. The two dotted lines in Figure 1 are the risk
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functions of the decision procedure in (4) with w = 1/5 and w = 4/5, for
the flatter and the downward pointing curve, respectively. The plot shows
clearly that there is potentially a lot to gain by incorporating our rudimentary
knowledge of physical laws into the decision procedure. This is seen by noting
that the two dotted risk functions both lie below the solid curve in a region
around θ = 1/2. More importantly, according to the above definition of
rationality, incorporating a prior hunch into our decision procedure seems to
be the rational thing to do.

The Bayesian approach to statistics, which provides a formal framework
for how to incorporate such prior hunches into decision procedures, and for
updating beliefs in light of data, is presented in Section 5.

In this section we have seen an example where the empirical average,
formed by the numerical data at hand, ought to be supplemented by sub-
jective beliefs, that is more vague data, to get closer to reality. Since an
objective analysis is often seen as one that is based solely on hard undis-
puted numerical data, it is troubling to see that relying exclusively on such
data might not be the rational thing to do.

In the next section I give a brief presentation of the frequentist approach
to statistics. This presentation provides the necessary background for un-
derstanding why the frequentist approach violates the principles presented
in Section 4.

3 Frequentism and p-values

Scientific findings based on the proper use of frequentist statistical methods
are often regarded as objective (Berger and Berry, 1988). Without going too
deeply into the reasons for this (reasons which are mathematical, historical
and sociological), it here suffices to say, somewhat loosely, that when a model
supposed to generate the observed data is chosen, it is up to the data to decide
the rest. ‘The rest’ refers to the likely values of the parameters in the model,
confidence intervals for these, and so on.

This means that as long as the data are collected in a routine manner,
yielding a sample satisfying the requirements of procedural objectivity, and
the model supposed to generate the data is agreed upon by a community
of researchers (i.e. concordant objectivity), the subsequent inferences are
regarded as objective. Importantly, no vague data, such as the subjective
hunches invoked in the example of Section 2.2, ever enters the analysis (at
least not in a transparent manner, see Section 5.2).

Frequentist statistics is, as the name suggests, closely related to the view
that probability expresses hypothetical long run frequencies. If we toss a coin
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infinitely many times the share of heads will converge towards a number, and
it is this number that we call the probability of heads. On this view, the
probability of heads is a property of a coin, just as weight and circumference
are properties of a coin. And similarly to how we would use a fine tuned
kitchen weighing machine to ascertain the weight of a coin, we use a finite
number of coin tosses to measure the property ‘probability of heads’ of a
given coin.

This view of probability has implications for what kind of probability
statements that are meaningful. Since the tendency of the coin of showing
heads in a single toss is a constant quantity, it is, on the frequentist interpre-
tation of probability, meaningless to claim that this quantity lies in a certain
interval, between 1/3 and 2/3 for example, with a given probability. Either
the quantity ‘probability of heads’ is in this interval, or it is not, the proba-
bility is 1 or 0, and nothing in between. In other words, the frequentist view
of probability entails that we cannot make probability statements about the
tendency of the coin to show heads. What we can make probability state-
ments about is the tendency of the coin to show heads in 4 of 12 tosses, under
a given assumption about the coin, for example that we are dealing with a
fair coin.

Say we want to ascertain whether or not the 12 coin tosses in (1) stem
from a coin that shows heads and tails with equal probability, that is a
fair coin. The hypothesis we put to test, and under which the subsequent
probabilities are computed, is called a null-hypothesis. So in this case our
null-hypothesis is that the coin is fair. A very common way of assessing the
evidence in data against a null-hypothesis is by a p-value. A p-value is the
probability of observing what we actually observed, or something even less in
favour of the null-hypothesis, under the assumption that the null-hypothesis
is true. If this probability is below a predefined threshold, often 5 percent,
we stop believing in the truth of the null-hypothesis.

The important thing to notice is that due to its reliance on the frequentist
interpretation of probability, the probability given by the p-value concerns
the outcome and possible outcomes(!) of an experiment, under a given as-
sumption about a property of the coin, and not this property as such.

These features of frequentist statistics should be kept in mind when the
likelihood principle, and two principles equivalent to it, are presented in the
next section. After having presented and argued for the likelihood principle,
I move on to explain why the frequentist approach to statistics violates this
principle in Section 4.4.
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4 Sufficiency, conditionality and likelihood

In the Introduction I claimed that when making inductive inferences one
ought to use methods that do not lead to contradictions. The contradictions
I have in mind, are possible contradictions between an inferential procedure
and some foundational principles that every inductive inference should obey.
Contrary to what is the case in deductive logic, where most logicians and
mathematicians agree on the axiomatic basis provided by Zermelo-Fraenkel
set theory (Suppes, 1972, ch. 1), there is no agreed upon principled founda-
tion for inductive logic.9 The lack of a foundation is, however, not due to
a lack of trying, and in the following three sections I present what I deem
to be the most successful attempt at providing a principled foundation for
statistics.

In Section 4.1 and 4.2 I present two principles that are supposed to be so
intuitively obvious that any inferential procedure that does not obey them
should be dubious. The acceptance of these two principles forces one to ac-
cept at third principle, the likelihood principle, which is presented in Section
4.3. This principle has far ranging consequences for statistics, in particular
it entails that the frequentist approach to statistics is not permissible.

4.1 The sufficiency principle

Look back at the sequence of coin tosses in (1). We are to use these tosses
for making inferences about θ, the unknown probability of heads in a single
toss. Of the twelve tosses, four came up heads and eight came up tails. The
average number of heads is then 1/3. Suppose that this was all you knew -
thus instead of knowing that the first toss came up tails, the second tails,. . . ,
the fifth heads, and so on, you only knew the number 1/3 - would you then
have less, equally much or more information about the underlying θ? That
you should have more information is clearly not the case, after all, from the
entire sequence you can compute the average. Claiming that you have less
information is equivalent to saying that you would have reached a different
conclusion about θ with a sequence of tosses containing 4 heads and 8 tails
in a different order than in (1). This would be strange (the independence
assumption is crucial here). The conclusion is therefore that the full sequence

9I follow the Stanford Encyclopedia of Philosophy (Hawthorne, 2017), who defines a
system of inductive logic as any system of inductive inference that obeys what is known
as the Criterion of Adequacy : As evidence accumulates, the degree to which the collec-

tion of true evidence statements comes to support a hypothesis, as measured by the logic,

should tend to indicate that false hypotheses are probably false and that true hypotheses

are probably true.
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in (1) and the average 1/3 contain the same amount of information about θ.
Summary statistics with this property are called sufficient statistics. Such

statistics summarise the data in a manner that preserves all the information
the data contain about the parameters. Formally, a sufficient statistic S =
S(x) is any function of the data x, such that the distribution of the data
given S does not depend on θ.

In the coin tossing example it can be shown that the average number of
heads have this property. We are now ready for the sufficiency principle.

Sufficiency principle: Two observations x and y which are such that
S(x) = S(y), must lead to the same inference about θ.

Consider the two sequences of independent coin tosses,

x = (T T T T H T H T T H H T ),

y = (T H T T T H T T H T T H).

The average number of heads is 1/3 in both sequences, so with the notation
used above, S(x) = S(y) = 1/3. According to the sufficiency principle the
observations x and y should lead to the same conclusion.

4.2 The conditionality principle

You wake up early one morning and feel ill, thinking you might have a fever.
A bit dazed you start searching around for your newly acquired thermometer,
but you can’t find it, give up, and settle for your old thermometer that is still
in the drawer you put it in last winter. Being a biology student, you are well
aware that no temperature measurement device is completely accurate, there
is uncertainty attached to the number glimmering on the little screen. When
making up your mind about whether to keep or reject your null-hypothesis
of not being ill, should you take into account the fact that with a certain
probability, you could have found the new and more accurate thermometer?
Certainly not, is the obvious answer. After all, why would you let your
decision - ‘I’m in good shape’ or ‘I should stay in bed’, be influenced by a
temperature measurement that was never taken. This intuition is the essence
of the following principle.

Conditionality principle: If two experiments with the potential of yielding
an inference about θ can be conducted, and one of the two experiments is
randomly selected, then the resulting inference about θ should only depend on
the selected experiment.
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4.3 The likelihood principle

The likelihood principle is not quite as intuitive as the two preceding ones. It
is therefore of fundamental importance that it is equivalent with them. That
is, if you accept the sufficiency principle and the conditionality principle, then
you must accept the likelihood principle (Birnbaum, 1962; Berger and Wolpert,
1988; Robert, 2007). The reason for the likelihood principle not being quite
as intuitive as the two preceding principles, is that it requires the notion of
a likelihood function. We must start with this.

‘Eirik Jensen would never have run the risk for such a small amount of
money.’10 The person uttering this sentence makes a case for Jensen not
being corrupt (running the risk), because he thinks the probability of the
data (a relatively small amount of Norwegian kroners) is low, given that
Jensen is corrupt. So, under the hypothesis that Jensen is indeed corrupt,
the data have a low probability, hence the hypothesis seems unlikely. This
conditional probability can be expressed as

Pr(data | hypothesis).

Notice that the person above argues for Jensen’s innocence by considering
the conditional probability as a function of the hypotheses. The argument is
that

Pr(small money | corrupt) < P (small money | not corrupt),

where it is the hypothesis that ranges over two competing hypotheses, while
the datum (small money) is held constant. Generally, the function being
used in this argument may therefore be written,

L(hypothesis) = Pr(data | hypothesis), (5)

where ‘hypothesis’ ranges over a set of mutually exclusive hypotheses. A
conditional probability viewed as a function of the hypotheses (in which case
it is no longer a probability in the strict sense of the word), is called a
likelihood function. The likelihood principle states that,

Likelihood principle: All the information about a hypothesis H obtained
from an experiment is contained in the likelihood function L(H). Two like-
lihood functions L1(H) and L2(H) that are proportional contain the same
information abouth H.

Some pharmacology students11 claim that they have developed a new
medicine that is superior to the old one. It is known that patients with some

10Jensen is a former Norwegian policeman. In 2017, he was convicted of corruption and
drug trafficking, and sentenced to the maximum penalty of 21 years imprisonment.

11This example is originally due to Lindley and Phillips (1976), and appears in various
forms in books on Bayesian statistics and the likelihood principle.
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kind of cancer have a 70 percent chance of survival after treatment with
the old medicine. The claim of the pharmacology students is based on an
experiment where the new drug was administered to 10 patients, of which
only one was not cured. This, the pharmacologists claim, gives a p-value
of 0.04, leading to rejection of the null-hypothesis of the new drug being
equally good or worse than the old drug. Pfixer, the company producing
the old drug, disagrees with the students, claiming that there is no evidence
to the effect that the new drug is superior to the old one. In fact, in a
radio debate Pfixer’s spokesperson tells the student representative to redo
her introductory statistics course, because the correct p-value is 0.15, not
0.04 as the students claim.

Who is right? In the radio debate the student retorts that it is the people
at Pfixer who ought to redo their introductory courses. The reason for this,
she continues, is that with limited resources the students first tested the
drug on one person, who was cured. So was the second, the third,. . . , and
the ninth. To avoid saying that 100 percent of their test patients were cured,
which would appear too good to be true, the students had decided to keep on
recruiting new patients until they found one who was not cured by their drug.
This was the tenth person. This experiment gives the likelihood function

Lg(θ) = Pr(#cured until failure = 9 | θ) = θ9 (1− θ).

Under the null-hypothesis of θ = 0.7, the probability of observing what the
students observed, or even more cured patients, is then

(0.7)9 (1− 0.7) + (0.7)10 (1− 0.7) + (0.7)11 (1− 0.7) + · · · = 0.04. (6)

Pfixer, on the other hand, based their claim on the supposition that the stu-
dents had sampled 10 patients, administered the drug to them, and counted
the number of cured people. This, would give the likelihood

Lb(θ) = Pr(#cured = 9 | θ) =

�

10

9

�

θ9(1− θ),

and a probability of an observation equally or more in favour of the students’
drug, compared to the result actually obtained, of

10× (0.7)9 (1− 0.7) + (0.7)10 = 0.15. (7)

With a confidence level of 5 percent, the students rightly reject the null-
hypothesis, while with the same confidence level, Pfixer just as correctly,
does not reject the null-hypothesis. This means that the same data, 1 out
of 10 which is 1 out of 10 however you might look at it, lead to conflicting

12



conclusions. Intuitively, this does not seem right, how can the same average
lead to different conclusions? This intuition is in accordance with the suffi-
ciency principle, because the average happens to be a sufficient statistic in
both experiments.

As a consequence, this example shows that the classical frequentist meth-
ods used by both the students and by Pfixer are in conflict with the likelihood
principle. So, to answer the question raised above - Who is right? - if one
adopts the likelihood principle, both the students and Pfixer are equally
wrong.

To see that the frequentist procedures are in conflict with the likelihood
principle, notice that the ratio of the likelihoods is equal to 10 for all values
of θ, Lb(θ)/Lg(θ) = 10, that is, they are proportional. With two propor-
tional likelihoods at hand, the likelihood principle commands that the same
inferences should be made about θ.

4.4 Summing over possible worlds

To see what it is about the p-values 0.04 and 0.15 that is problematic with
respect to the likelihood principle, look back at equations (6) and (7) and
notice how they are computed (or just read the definition of a p-value).
Consider (7), restated here

Pr(#cured = 9) + Pr(#cured = 10) = 10× (0.7)9 (1− 0.7) + (0.7)10 = 0.15.

This is a sum of the data actually obtained (#cured = 9), and of a more
extreme observation (#cured = 10), that was not observed. This means
that data that could have been observed, but were in fact not, contribute
to our conclusion. The same is true for the pharmacology students. In
other words, the students use hypothetical data as evidence against the null-
hypothesis, while Pfixer use hypothetical data as evidence in favour of the
null-hypothesis. Imagine the defence lawyer of Eirik Jensen using a hypothet-
ical scenario where Jensen received even less money than what he provably
did receive, as evidence against the hypothesis that the former policeman is
corrupt. It would not hold up.

For those scientists and statisticians who take the likelihood principle
seriously, Bayesian statistical methods are often regarded as the solution.
In the next section we will see why, while Section 5.1 problematises the
subjective element of Bayesian statistics.
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5 Bayesian statistics

Bayesian statistics is associated with the view that a probability expresses a
persons subjective belief in a proposition. Consider the proposition ‘I think
there is a 10 percent chance that I will experience the singularity.’12 This
is a proposition that demands a non-trivial leap of thought if one holds the
frequentist interpretation of probability. For this proposition to be meaning-
ful on a frequentist account of probability, one has to imagine that we are
living in one of infinitely many comparable universes, and that in 10 percent
of these, the singularity does occur.13

Or what about a woman who claims to be 60 percent certain of being
pregnant? This woman is either pregnant or not pregnant, she cannot be
anything in between. On a strict frequentist account of probability, it is
not easy to tell what the 60 percent the woman in question attaches to the
proposition ‘I’m pregnant’, really means.

To rid oneself of these qualms, one must reject the strict frequentist ac-
count of probability, and accept that probabilities express something subjec-
tive.14

The woman who is 60 percent sure of being pregnant decides to take a
pregnancy test. The test tells her that she is pregnant, but a pregnancy test
is not always correct, so the woman wonders what probability she should
ascribe to the proposition ‘I’m pregnant’, in view of the the positive test.
Bayes’ theorem tells her how this updating of beliefs should be carried out.
Let H0 denote the hypothesis ‘I’m pregnant’, and H1 its negation. Prior
to taking the test, the woman thought that Pr(H0) = 0.6 (called a prior
probability for natural reasons). The probability she is interested in after
taking the test is the so called posterior probability, written Pr(H0 | data),
that is the probability of H0 given data. Bayes’ theorem gives that

Pr(H0 | data) =
Pr(data |H0)Pr(H0)

Pr(data |H0)Pr(H0) + Pr(data |H1)Pr(H1)
. (8)

Since the datum in question is a positive test, the probability Pr(data |H0)
is the probability of the test telling the woman that she is pregnant when
she is pregnant, while Pr(data |H1) is the probability of the test telling the

12See Bostrom (2014) for more on the singularity.
13For some physicists and philosophers this might not be that much to swallow? See for

example Deutsch (1997).
14Or one might claim that some probabilities are objective (frequentist) and some

are subjective. For such a view, see Schweder and Hjort (2016) who distinguish be-
tween aleatory and epistemic probability. For Bayesians holding such a view, see
Gelman and Robert (2013).
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woman that she is pregnant when she is in fact not. The denominator is then
the total probability of positive test.15

Now, notice that with the notation for the likelihood function introduced
above, (i.e. L(H) = Pr(data |H)), Bayes’ theorem in (8) may be written

Pr(H0 | data) =
L(H0)Pr(H0)

L(H0)Pr(H0) + L(H1)Pr(H1)
, (9)

which makes it clear that the posterior probability Pr(H0 | data) only depends
on the data actually observed, and not on data that could have been observed,
which was the case with the p-values. Furthermore, suppose that we have
two likelihood functions Lg and Lb, which are such that Lg(H) = cLb(H),
for all hypotheses H and some constant c. Then it is easy to see that the
posterior probability will be unaffected by whether we base the analysis on
the one or the other likelihood function (the constant c appears in nominator
and denominator of (9)).

The upshot of this is that if the pharmacology students and Pfixer had
used Bayesian methods, they would - under one important condition! - reach
the same conclusion about the effectiveness of the new medicine. That the
pharmacology students used the likelihood function Lg(θ) and Pfixer the
likelihood function Lb(θ) would not matter because these are proportional,
as we saw Lb(θ) = 10Lg(θ).

5.1 Subjectivity and the difficult prior distribution

The ‘important condition’ alluded to in the previous paragraph is that the
pharmacology students and Pfixer use the same prior distribution. Without
the same prior, they will arrive at different conclusions about the effective-
ness of the new drug. This means that if pharmacology students and Pfixer
are to agree on the conclusions, they must hold the same beliefs about the
effectiveness of the new drug, before any experiment has been carried out.
That’s a tall order.

If the two parties fail to agree on a prior distribution, then Pfixer may
accuse the students of having tarnished their analysis by letting their bias in
favour of the new medicine sneak into their conclusions. This is subjective
and unscientific. Similarly, the students may accuse Pfixer of giving the
potential superiority of the new drug vanishingly little prior weight, simply
to avoid competition on the market. Whom to believe?

15In medicine the probabilities Pr(data |H0) and 1− Pr(data |H1) are called the sensi-

tivity and specificity of a test, respectively. These numbers are found in the user manual
for a test.
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cooled non-cooled
good 59 57
death/disability 19 22
total 78 79

Table 1: Data from Laptook et al. (2017), as given in STK4021 (2017).

This example highlights the difficulty of using Bayesian methods in scien-
tific analyses. It simply seems wrong to let subjective prior opinions influence
the conclusions. The example above is made up, but the difficulty is by all
means real.

Take for example the article by Laptook et al. (2017) which recently ap-
peared in JAMA. This article reports on a clinical trial investigating the
effect of hypothermia administered between 6 and 24 hours after birth on
death and disability from hypoxicischemic encephalopathy.16 In some rare
cases, newborns are deprived of oxygen to the brain due to a difficult birth.
Cooling these kids down to a body temperature of 33 degrees Celsius just
after birth, can save their life, with no later mental or motoric impairment.
The controversy revolves around how long after birth this cooling action is
still beneficial. Laptook et al. study the effect of cooling when it is initiated
inside the time window 6 hours to 24 hours after birth, as opposed to the
time window 0 to 6 hours after birth, which has been the recommandation
so far (this summary is taken from STK4021 (2017)).

Due to the rarity of hypoxicischemic encephalopathy, and the fact that
the cooling had to have taken place in the time window 6 to 24 hours after
birth, or not at all, for a child to be eligible for the study, Laptook et al. were
only able to recruit a limited number of kids. The data is given in Table 1.
As can be seen from Table 1, the possible effect of cooling comes down to
assessing the difference between

19

78
= 0.244 and

22

79
= 0.278.

I think most people would agree that this difference is not dramatic. Now, the
reason for this difference being so small might be because there is in fact no
difference, or because the sample is rather limited. The challenge of a limited
sample is what led Laptook et al. to use Bayesian methods to analyse their
data. In the Guide to Statistics and Methods section of the same issue of

16I was made aware of this article by Nils Lid Hjort who has written a blog post on the
matter (Hjort, 2017), contributed to a discussion (Walløe et al., 2017), and made an exam
exercise about it (STK4021, 2017).
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JAMA, Quintana et al. (2017) comment on Laptook et al., and write that
due the limitations of a small sample, Laptook et al.

[. . . ] used a Bayesian analysis of the treatment effect to ensure
that a clinically useful result would be obtained even if traditional
approaches for defining statistical significance were impractical.

To a disapproving reader this sounds like ‘since there is no difference in the
data, we supplanted the data with our prior beliefs to make a difference’.
How many such disapproving readers there are, I don’t know, the point is
that the objectivity of the finding - which Laptook et al. report as in favour
of late cooling - might be questioned.17

5.2 Making Bayes objective

So what does the Bayesian retort when confronted by the frequentist with her
inclination towards subjectivity? Somewhat simplified, there are two typical
answers. One line of defense is to admit that, yes of course, Bayesian analyses
are subjective, but so are all frequentist analyses as well, the frequentist
only cover the subjectivity up better (Berger and Berry, 1988). There is
definitively something to this line of defense. It is not as if all steps of
a scientific process are completely objective, and then a prior distribution
comes and destroys all this. On the contrary, every step in a research project
- from building the model to collecting the data - is full of subjective choices
that have to be made. Now, as briefly discussed in Section 2.1 the objectivity
of this process may stem from the fact that it is carried out in a routine
way, agreed upon by a community of researchers, and according to strict
protocols. But if it is this that makes a finding objective, one might well
imagine a community of researchers agreeing on the correct prior distribution
for a given problem. Such a consensus on a prior distribution would make it
qualify as concordantly objective (see Section 2.1).

Another response to the accusation of excessive Bayesian subjectivity, is
attempts at making Bayesian analyses objective (see (Berger, 2006) for a
review). Objective Bayesian analyses have traditionally been understood as
analyses where the prior distribution does not favour certain values of the
parameters at the expense of others.

One might for example imagine that the pharmacology students and
Pfixer could agree on carrying out a Bayesian analyses where the prior dis-

17The quote above raises further questions. Why is it that a finding of no difference
does not qualify as a ‘clinically useful result’? And what is ‘traditional approaches for
defining statistical significance were impractical’ supposed to mean? A p-value can always
be defined, whether or not it indicates a significant finding is another matter.
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Figure 2: A uniform prior distribution for θ (left panel), and the resulting
prior distribution for the odds θ/(1− θ) (right panel).

tribution ascribed equal weight to all possible values of θ (recall that θ was
the probability of an ill patient being cured by treatment, and that the old
drug had θ = 0.7). In this example, this would mean that the prior prob-
ability was smeared out equally over the interval from 0 to 1. Such a prior
distribution is displayed on the left in Figure 2.

So far so good. Now, consider the much used measure in medicine and
epidemiology, namely the odds. The odds of an event is the probability of
the event divided by the probability of it not occurring, so in our example,
the odds of an ill patient being cured by treatment is θ/(1 − θ). Since we
have prior beliefs about θ, these prior beliefs obviously translate into prior
beliefs about the odds. The problem is that the objective prior for θ, does
not translate into an objective prior for the odds. In fact, the prior for θ that
ascribes equal probability to all values of θ, translates into a prior for the
odds which favours certain values of the odds above others. The resulting
prior probability density for the odds is given on the right in Figure 2.

Figure 2 shows clearly how most of the probability mass is tilted in favour
of small values of the odds, while larger values (those wished for by the
Pharmacology students) receive far less prior weight. In summary, a prior
that is objective for a parameter, does not translate into an objective prior
for functions of that parameter. This is problematic, because it is clearly
unreasonable to claim complete objectivity with regards to θ, while being
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heavily biased when it comes to θ/(1−θ). This is merely one of the challenges
in the branch of statistics known as Objective Bayes.

6 Rationality vs. objectivity?

The argument made in this essay is that a system of inductive inference
qualifies as rational if it obeys the definition of rationality given in Section
2.2, and does not contradict certain basic principles. The basic principles
argued for in this essay are the sufficiency and the conditionality principle,
which together imply the likelihood principle. In Section 4.3 I indicated
why the dominant school of statistics, frequentism, is in conflict with the
likelihood principle. In Section 2.2 it was also shown that incorporating
prior beliefs into our decision procedures can bring us closer to reality, and
I claimed that procedures that do not incorporate prior beliefs are in many
cases irrational.

The strive for rationality led to the consideration of Bayesian methods.
Bayesian inference is in accordance with the likelihood principle, and incor-
porates prior beliefs into decision procedures in a manner prescribed by the
laws of probability. In Section 5.1 it was, however, shown that Bayesian
methods may fail to qualify as scientifically objective.

It therefore appears as if the strive for rationality drives us to adopt
methods that are scientifically dubious (Bayes), while the strive for objectiv-
ity drives us to accept methods (frequentism) that do not qualify as rational.
This conflict has been recognised by many statisticians, and a general atti-
tude seems to be that in certain situations Bayes is right, while in others one
ought to be a frequentist (‘In business I am a Bayesian’, while in science ‘I
am a frequentist’, for example). This is a dissatisfying state of affairs.

Many possible solutions to this conflict have been proposed, one of which
is Objective Bayes. One major challenge of this approach has already been
mentioned, another no lesser challenge is that the objective Bayesian often
needs to work with prior (and even posterior) distributions that are not
probabilities in the classical sense.18

Other inferential systems meant to resolve this conflict are the Error-
Statistical account of Deborah Mayo (Mayo and Spanos, 2010), and methods
based on the so-called Law of the Likelihood (Royall, 2000; Gandenberger,
2013). It is difficult (at least for me, at present) to tell how promising these
approaches are, but so far they have not been adopted by the statistical
community at large, and the statistical research on these topics is limited.

18Taraldsen and Lindqvist (2010) provide an introduction to a theory of probability
intendended to tackle this problem.
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The perhaps dispiriting solution I alluded to in the introduction is a
Bayesian one. As hinted at in the text, I think that there is nothing in the
way of Bayesian methods being applied in scientific analyses with the same
claim to objectivity as frequentist methods.

This would require that the community of researchers agrees on what prior
distributions are the correct ones for given problems, and that the updating
of beliefs in a field of study is carried out in a routine and agreed upon way.
That is, the community of researchers must agree on how, when a new study
is conducted, one is to use the present pool of knowledge to inform the priors
used in the new study.

This might appear as an insurmontable task, but when one thinks about
the amount of tacit knowledge shared by a community of researchers when
performing all other parts of a study, as well as when interpreting the results
of new study, it might not be impossible.
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