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What is it?

A form of convergence of random variables. In statistics, one typically

deals with two forms of convergence of random variables.

Convergence in probability Xn
p→ X. For every ε > 0,

Pr(|Xn −X|≥ ε)→ 0.

Convergence in distribution Xn
d→ X. For every bounded and

continuous function f ,

E f(Xn)→ E f(X).

Stable convergence Xn
st.→ X, is weaker than convergence in

probability, and stronger than convergence in distribution.

Xn
p→ X ⇒ Xn

st.→ X ⇒ Xn
d→ X.
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Why do we need it?

(i) The Cramér–Slutsky rules don’t apply when the limit in

probability of the denominator is a proper random variable.

(ii) Conditionality principle considerations: Often, we want to bring

prelimiting information into the limit distribution.

(iii) Conditioning on a path might mess up the probabilistic structure

that is used in the derivation of the asymptotic distribution, for

example independence or conditional independence.

(iv) Simplifies measure change. Derive large-sample results under one

(‘easy’) probability measure, then adjust the limiting distribution

back to the true probability measure.

(v) Localisation. Large-sample results that apply to a stopped

(localised) process, apply almost immediately to the full process.

For example, we can assume coefficients are bounded, even when

they need not be.
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(i) The Cramér–Slutsky rules

If X1, . . . , Xn are i.i.d. random variables with expectation θ and

variance σ2. The central limit theorem
√
n(X̄n − θ)

d→ N(0, σ2).

Cramér–Slutsky rules: If An →d A, and Bn →p b, then

AnBn →d Ab.

So if σ̂n →p σ,
√
n(X̄n − θ)
σ̂n

d→ (1/σ)N(0, σ2) = N(0, 1),

and we can base inference on θ on the approximation

Pr(
√
n(X̄n − θ) ≤ z) ≈ Φ(z/σ̂n).

If σ is a proper random variable, the central limit theorem above is

not strong enough for this conclusion.
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. . . might fail when b is a random variable

Let U1, U2, . . . be i.i.d. Unif(0, 1), (an)n≥1 ⊂ [0, 1/2]. Set

An =

{
1, Un ∈ [an, an + 1/2],

0, otherwise.

Then A1, A2, . . . are i.i.d. Bernoulli(1/2). Let B ∼ Unif(0, 1). Then

An →d A ∼ Bernoulli(1/2), and B →p B.

AnB =

{
B, Un ∈ [an, an + 1/2],

0, otherwise.

Let f(x) = max{min(x, 1), 0}, and note that f is bounded and

continuous. Now,

E f(AnB) =

∫ an+1/2

an

v dv =
1

2

(
an +

1

4

)
.

This example is from Häusler and Luschgy (2015).
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(ii) The conditionality principle1

Sir David Cox (1994, p. 442):

How does the long run become relevant to a particular set of

data? Well, by being suitably conditioned. The arguments for

this seem to me absolutely overwhelming [. . . ]

Famous example from Cox (1958, p. 360): Flip a fair coin X and

sample

Y ∼ N(θ, σ2
X),

where σ2
0 < σ2

1 . Suppose X = 1. What is the ‘correct’ variance of

θ̂ = Y ,

σ2
1 , or

σ2
0 + σ2

1

2
.

1See Barndorff-Nielsen and Cox (1994, p. 34) for a precise definition.
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A toy example2

Let ε1, ε2, . . . be i.i.d., Pr(ε1 = −1) = Pr(ε1 = 1) = 1/2. For some

ρ ∈ (−1, 1) set σ1 = ρε1, and σi =
∑i−1
j=1 ρ

jεj for i ≥ 2. We observe

Xi = θ + σiεi, for i = 1, 2, . . .,

and seek to make inference on θ. By Doob’s convergence theorem

σn =

n∑
j=1

ρjεj → σ∞ =

∞∑
j=1

ρjεj ,

almost surely, with σ∞ a random variable. Set

E exp{it
√
n(X̄n − θ)} → E exp

(
− t2σ2

∞
2

)
thus Xn tends in distribution to a mixed normal limit,

√
n(X̄n − θ)

d→ N(0, σ2
∞).

2Adapted from Hall and Heyde (1980).
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Toy example contd.

But √
n(X̄n − θ)

d→ N(0, σ2
∞),

cannot be directly used for inference on θ.

(i) Even though σ̂n →p σ∞, we cannot conclude that√
n(X̄n − θ)/σ̂n tends to a standard normal;

(ii) Averaging out σ∞ breaches the conditionality principle;

(iii) Condition on σ∞? But then we fiddle with the independence of

the ε1, ε2, . . ..
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Definition of stable convergence

A probability space (Ω,F ,Pr), and G ⊂ F , on which we have a

sequence (Xn)n≥1 with values in a Polish space (X ,B).3 Say that Xn

converges G-stably, and write

Xn ⇒ X, G-stably,

if

EY f(Xn)→
∫

Ω

∫
X
Y (ω)f(x)Q(ω,dx)Pr(dω),

as n→∞, for all bounded G-measurable random variables Y , and all

bounded and continuous functions f .

3A complete (all Cauchy sequences converge) and separable (has a countable and

dense subset) metric space.
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What does this mean? I

Have a sequence X1, X2, . . . on (Ω,F ,Pr).

Convergence in distribution:

Pr(Xn ∈ B) = Pn(B)→ P (B), for all P -cont. B,

and we ‘realise’ the limit P with a random variable X ∼ P . Since

Pr(Xn ∈ B) = Pr(Xn ∈ B | {Ω, ∅}), the distributions of (Xn)n≥1

given the trivial σ-algebra converge.

Stable convergence: Condition on a larger σ-algebra G ⊆ F (‘bring

more information into the limit’), and

Pr(Xn ∈ B | G) = Qn(·, B)→ Q(·, B),

in the sense above. Can regard stable convergence as convergence of

conditional distributions.
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What does this mean? II

As usual, we would like to ‘realise’ the limiting distribution by a

random variable. Construct an extension of the original probability

space,

Ω̃ = Ω× R, F̃ = F ⊗ B, P̃r(dω,dx) = Q(ω,dx)Pr(dω).

Then define a random variable Y (ω, x) on the extension, such that

Pr(Y ≤ y | G)(ω) = Q(ω, (−∞, y ]).

In the toy example, that
√
n(X̄n − θ) converges F-stably to normally

distributed Y , means that

Y (ω, ·) ∼ Q(ω, (−∞, y]) =

∫ y

−∞

1√
2πσ∞(ω)

exp
(
− z2

2σ2
∞(ω)

)
dz.
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Consequences

If Yn converges G-stably to Y , then Yn →d Y (set ξ = 1).

Proposition VIII.5.33 in Jacod and Shiryaev (2003, p. 513). There is

equivalence

(1) Yn ⇒ Y G-stably;

(2) (Yn, X)→d (Y,X) for all G-measurable X;

(3) (Yn, X)⇒ (Y,X) G-stably for all G-measurable X;

(4) If Yn = (Yn,1, . . . , Yn,p)
t take values in Rp, then

E IA exp(iutYn)→ E IA exp(iutY ), for all A ∈ G.

‘Stable’ Cramér–Slutsky. If An converges G-stably to A, and

Bn →p B, for G-measurable B, then

AnBn →d AB.

Pf: By (2), (An, Bn) = (An, B) + op(1)→d (A,B), & cont. mapping.
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Convergence in distribution, but not stably

(1) Let X1, X2 be independent with distribution function F . Set

Yn =

{
X1, for n odd,

X2, for n even.

Then Yn →d F , but Yn does not converge stably. If A = {X1 ≤ a},
then ,

E IAf(Yn) =

{
E IA g(X1), for n odd,

F (a) E g(X2), for n even.

(2) Let X1 ∼ N(0, 1), independent of X2, X3, . . ., that are i.i.d. with

EX2 = 0 and Var(X2) = 1. Set F = σ(X1, X2, X3, . . .), and

Yn =
1√
2
X1 +

1√
2
√
n

n∑
i=2

Xi.

Then

Yn
d→ N(0, 1),

but Yn does not converge F-stably to a N(0, 1).
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Applications

(1) Supercritical Galton–Watson processes.

(2) Critical AR(1) processes.

(3) Stochastic volatility models with leverage effect.
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Supercritical Galton–Watson processes

(Yn,j)n,j≥1 i.i.d. Poisson(θ). Suppose that X0 = 1, and set

Xn =

Xn−1∑
j=1

Yn,j .

Assume that θ > 1.4 Using that X1, X2, . . . is a Markov chain, the

log-likelihood is

`n(θ) =

n∑
j=1

{xj(log θ + log xj−1)− θxj−1 − log xj !},

and by solving ∂`n(θ)/∂θ = 0 we find

θ̂n =

∑n
j=1Xj∑n
j=1Xj−1

, so θ̂n − θ =

∑n
j=1(Xj − θXj−1)∑n

j=1Xj−1
.

4If θ ≤ 1, then limn→∞Xn = 0 almost surely (Williams, 1991, Ch. 0).
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Supercritical Galton–Watson processes contd.

The conditional variance process is

n∑
j=1

E {(Xj − θXj−1) | Fj−1} =

n∑
j=1

Var(Xj | Fj−1) = θ

n∑
j=1

Xj−1.

Since θ−nXn is a martingale (and supn E |θ−nXn|2<∞),∑n
j=1Xj−1∑n
j=1 θ

j−1
=

∑n
j=1 θ

j−1θ−(j−1)Xj−1∑n
j=1 θ

j−1

p→M∞,

by Doob’s convergence theorem, and Toeplitz lemma. But M∞ is a

proper random variable. Since
∑n
j=1 θ

j−1 ∼ θn/(θ − 1),

θ − 1

θn

n∑
j=1

E {(Xj − θXj−1) | Fj−1}
p→M∞.
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Critical AR(1)-type process

Consider Xj = θ(j/n)Xj−1 + εj for j = 1, . . . , n, with θ(t) some

function on [0, 1], X0 = 0, and ε1, ε2, . . . i.i.d. with E ε1 = 0,

Var(ε1) = 1, and E ε4
1 <∞. Test H0 : θ(t) = 1.

For t ∈ (0, 1], the least squares estimator is

θ̂n(t) =

∑
j/n≤tXj−1Xj∑
j/n≤tX

2
j−1

.

Under H0

n(θ̂n(t)− 1) =

∑n
j/n≤tXj−1εj∑n
j=1X

2
j−1

,

and using the Skorokhod embedding

1

n

∑
j/n≤t

Xj−1εj =

∫ t∗/n

0

Wn(s) dWn(s) + op(1),

where Wn(t) = B(tn)/
√
n

d
= Bt, and t∗ = max{ti : ti ≤ nt} for

stopping times t1, t2, . . ..
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Critical AR(1)-type process contd.

By an application of Itô’s lemma dW (s)2 = 2W (s) dW (s) + s,

1

n

∑
j/n≤t

Xj−1εj =
Wn(t∗/n)2 − t∗/n

2
+ op(1).

Since n−1E t∗ = n−1Var(
∑
i/n≤t εi) = [nt]/n→ t, and

n−2E t2∗ ≤ n−24 E ε4
1, we get t∗/n→p t. By continuity of t 7→Wn(t)

1

n

∑
j/n≤t

Xj−1εj
d→ B2

t − t
2

,

If we show that this convergence is stable (which it is), then( 1

n

∑
j/n≤t

Xj−1εj ,
1

n2

∑
i/n≤t

X2
i−1

) d→
(B2

t − t
2

,

∫ t

0

B2
s ds

)
,

and we can conclude

n(θ̂n(t)− 1)
d→ B2

t − t
2
∫ t

0
B2
s ds

.
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Simulations

With n = 1 000, σ = 1, and H0 true θ(t) = 1, and ε1, ε2, . . . i.i.d.

Pr(εi = 1) = Pr(εi = −1) = 1/2.
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Volatility estimation

Consider the process

dXt = µt dt+ σt dWt, t ∈ [0, T ],

where X0 = x0, Wt is a one-dimensional Wiener process, and the

volatility σ2
t is itself a non-negative continuous Itô-process that might

in part be driven by Wt. Xt is observed at times

0 = t0 < t1 < · · · < tn−1 < tn = T,

and tj+1 − tj = T/n for all j. Want inference on the integrated

volatility

θt =

∫ t

0

σ2
s ds, at time T .

That the realised volatility

θ̂nt =
∑
tj+1≤t

(Xtj+1
−Xtj )2 p→

∫ t

0

σ2
s ds = θt, (1)

is a fundamental fact about (semi-)martingales (Jacod and Shiryaev,

2003, Theorem I.4.47, p. 52). 20



Volatility estimation contd.

One finds that

θ̂nt − θt = Mn
t + op(n

−1/2),

where Mn
t is the continuous time martingale

Mn
t = 2

∑
tj+1≤t

∫ tj+1

tj

(Xs −Xtj ) dXs + 2

∫ t

t∗

(Xs −Xt∗) dXs,

with t∗ = max{tj+1 : tj+1 ≤ t}.

Heuristic argument:

(Xs −Xtj )2 = (

∫ s

tj

σu dWu)2 ≈ (s− tj)σ2
tj .

The predictable quadratic variation,

〈Mn,Mn〉(tj ,tj+1] =

∫ tj+1

tj

(Xs −Xtj )2σ2
s ds

≈
∫ tj+1

tj

(s− tj)σ4
tj ds =

(tj+1 − tj)2

2
σ4
tj .
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Volatility estimation contd.

n〈Mn,Mn〉t
p→ 2T

∫ t

0

σ4
s ds, for all t

and by a martingale CLT (Mykland and Zhang, 2012, p. 152),

n1/2(θ̂nT − θT )→
(
2T

∫ T

0

σ4
t dt
)1/2

Z

stably in distribution, where Z ∼ N(0, 1) is independent of
∫ T

0
σ4
t dt.

Due to the stability of this convergence

n1/2(θ̂nT − θT )

cn

d→ N(0, 1),

where c2n is a consistent estimator of 2T
∫ T

0
σ4
t dt (see

Mykland and Zhang (2012, Theorem 2.28, pp. 137–138) for such an

estimator).
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Martingale central limit theorems

Two theorems for continuous martingales, here stated for continuous

martingales, both extend to the càdlàg case.
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The independent-of-data condition

Stable convergence is weak convergence conditionally on (parts) of the

data. Need something more concrete than a σ-algebra to represent

the data:

Ft = σ(W
(1)
t , . . . ,W

(p)
t ) = σ(indep. Wiener processes),

is sufficient when dealing with continuous processes. When trying to

show that Mn ⇒M =
∫
f dW ′, we must ensure that Mn tends to

something that is uncorrelated with the W (1), . . . ,W (p), that is,

〈Mn,W (j)〉t →p 0 for all j.

The Lévy-characterisation (Karatzas and Shreve, 1991, p. 157): The

following are equivalent

1) (X(1), . . . , X(k)) is a standard Wiener process;

2) X
(i)
t X

(j)
t − δi,jt is a local martingale for 1 ≤ i, j ≤ k;

3) [X(i)X(j)]t = δi,jt for 1 ≤ i, j ≤ k,

where δi,j = 1 if i = j and δi,j = 0 otherwise, the Kronecker delta.
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Check the independence condition

Let dXt = σt dWt, for t ∈ [0, 1], with W a 1-dim. Wiener process, and

set

Mn
t = 2n1/2

∑
tj+1≤t

∫ tj+1

tj

(Xs −Xtj ) dXs + 2n1/2

∫ t

t∗

(Xs −Xt∗) dXs,

The tricicity

n1/2[X,X,X]nt = n1/2
∑

tn,i+1≤t

(Xtn,i+1
−Xtn,i

)3,

is consistent for [Mn, X]t. If tn,i+1 are, for example, fixed and

equidistant times tn,i+1 − tn,i = 1/n, then

n1/2[X,X,X]nt =
∑

tn,i+1≤t

(Xtn,i+1
−Xtn,i

)3 ≈ 1

n

∑
tn,i+1≤t

N(0, σ2
tn,i

)3,

which tends to zero in probability, E N(0, σ2)3 = 0. Thus,

[X,X,X]nt →p vt 6= 0, is closely related to the skewness of the

increments Xtn,i+1 −Xtn,i .
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Endogenous observation times

Let Xt be a 1-dim. Wiener process. We observe Xt at tn,0 = 0, and

tn,i+1 = smallest t > tn,i s.t.

{
Xt −Xtn,i−1

= n−1/2a, or

Xt −Xtn,i−1 = −n−1/2b,
, a, b > 0
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A version of Example 4 is in Li et al. (2014, p. 590).
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Endogenous observation times contd.

Then

Xtn,i
−Xtn,i−1

d
= n−1/2Y, where Y =

{
a, with prob. b

a+b ,

−b, with prob. a
a+b .

,

independent. Importantly,

E (Xtn,i
−Xtn,i−1

)3 =
a− b
n3/2

,

so non-zero skewness when a− b 6= 0, and n1/2[X,X,X]nt
p→ a− b.

Can ‘fix’ this by constructing a martingale (finding a process gs)

M̃n
t = Mn

t −
∫ t

0

gs dXs, so that 〈M̃n, X〉t
p→ 0,

and adjusting back to get

Mn
t ⇒

∫ t

0

as dXs +

∫ t

0

bs dW ′s, F-stably.

which is a F-conditional Gaussian martingale (Jacod and Shiryaev,

2003, p. 130).
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Relationship to standard asymptotics

Suppose that Z1, Z2, . . . are i.i.d. random variables with

EZ1 = 0, Var(Y ) = σ2, ζ =
EZ3

σ3
, κ =

EZ4

σ4
.

Estimator σ̂2
n = n−1

∑n
i=1 Z

2
i , and

√
n(σ̂2

n − σ2)
d→ N{0, σ4(κ− 1)}.

Consider

σ̃2
n =

1

n

n∑
i=1

Z2
i − ĉn

1

n

n∑
i=1

Zi, with ĉn =

∑n
i=1 Z

3
i∑n

i=1 Z
2
i

p→ EZ3
1

EZ2
1

=: c,

where c minimises

Var(Z2
1 − cZ1) = σ4(κ− 1) + c2E [Z2

1 ]− 2cE [Z3
1 ]

√
n(σ̃2

n − σ2) =
1

n

n∑
i=1

(Z2
i − cZi)− (ĉn − c)

1

n

n∑
i=1

Zi

=
1

n

n∑
i=1

(Z2
i − cZi) + op(1)

d→ N{0, σ4(κ− 1− ζ2)}.
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Measure change and stable convergence

Suppose

dXt = µt dt+ σt dWt, X0 = x0,

with W a Wiener process under P , and that we observe Xt at discrete

time 0 ≤ tn,0, . . . , tn,n ≤ T . It can be easier to derive large-sample

results when Xt is a martingale, rather than a semimartingale, that is

dXt = σt dW ′t , X0 = x0,

with W ′ a Wiener process under P ′.

The probabilities P and P ′ are mutually absolutely continuous (see

Girsanov’s theorem, Karatzas and Shreve (1991, Corollary 3.5.2,

p. 192)) and the Radon–Nikodym derivative dP/dP ′ is F-measurable.

Let Yn =
√
n(θ̂nT − θT ), as above, and assume that Yn ⇒ Y F-stably

under P ′. For bounded & cont. g, and bounded F-meas. ξ,

EP ξg(Yn) = EP ′
dP

dP ′
ξg(Yn)→ EP ′

dP

dP ′
ξg(Y ) = EP ξg(Y ),

see Mykland and Zhang (2009, Prop. 1, p. 1408).
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Localisation and stable convergence

An example from Mykland and Zhang (2012, pp. 156–161): When

proving that

Yn = n1/2(θ̂nT − θT )→
(
2T

∫ T

0

σ4
t dt
)1/2

Z = Y, stably,

it is convenient to assume that σ2
t ≤ σ2

+, for all t, where σ2
+ is some

constant. Stable convergence makes it possible to relax this

assumption, and instead assume that σ2
t is locally bounded. That is,

there is a sequence τ1 < τ2 < τ2 < · · · of stopping times such that

Pr( lim
m→∞

τm = T ) = 1, and σ2
t ≤ σ2

m,+, for 0 ≤ t ≤ τm.

For if Yn ⇒ T F-stably, then ξI{τm≤T} is F-measurable

E ξI{τm≤T}f(Yn)→ E ξI{τm≤T}f(Y ),

and

|E ξf(Yn)− E ξf(Y )|
≤ |E ξI{τm≤T}f(Yn)− E ξI{τm≤T}f(Y )|+ max

y
|f(y)|Pr(τm > T ).
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Some additional details on the AR(1) example i

The denominator in the expression for θ̂n(t) is

Zn(t) =
1

n

∑
j/n≤t

Xj−1εj .

Since X0 = 0, for j = 1, . . . , n, we have Xj =
∑j

i=1 εi, and by the

Skorokhod embedding, there are stopping times t1 ≤ t2 ≤ · · · , so that

Xj =

j∑
i=1

εi = B(tj), and εj = B(tj)−B(tj−1), for j = 1, 2, . . .,

for a Brownian motion B, where we take t0 = 0. Set

Wn(t) = B(nt)/
√
n

d
= Bt by Brownian scaling. We can now write

Zn(t) =
∑

j/n≤t

1√
n
B(tj−1)

1√
n
{B(tj)−B(tj−1)}

=
∑

j/n≤t

Wn(tj−1/n){Wn(tj/n)−Wn(tj−1/n)}

=

∫ t∗/n

0

Wn(s) dWn(s) + op(1),
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where t∗ = max{tj : tj ≤ nt}, and the op(1) term is∑
j/n≤t

∫ tj/n

tj−1/n

{Wn(s)−Wn(tj−1/n)} dWn(s) = op(1),

By Itô’s formula

Zn(t) =

∫ t∗/n

0

Wn(s) dWn(s) + op(1) =
Wn(t∗/n)2 − t∗/n

2
+ op(1).

Since t∗/n→p t, and t 7→Wn(t) is continuous,

Zn(t)
d→ B2

t − t
2

.

For the claims in the slides above, it is also important to argue that

(n−1
∑

j/n≤t

Xj−1εj , n
−2

∑
j/n≤t

X2
j−1),

converges jointly. Then finish up the proof of finite-dim. convergence, and

check tightness, to get full process convergence.
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