PROPOSED SOLUTION TO THE FINAL EXAM GRA6039 AUTUMN 2020

EMIL A. STOLTENBERG

Exercise 1

(a). Mathematically: $\widehat{\theta}_{n}$ is a random variable, while θ is a fixed number. Epistemologically: With data, we can realise $\widehat{\theta}_{n}$, that is, compute a value for it; the value of the parameter θ, on the other hand, will never be fully known.
(b). The estimator $\widehat{\theta}_{n}$ is unbiased for θ if $\mathrm{E} \widehat{\theta}_{n}=\theta$. (This must be true for every θ, but we give full score to this who mention just the first line here).
(c). That $\hat{\theta}_{n}$ is consistent for θ, means that we can pick n such that $\hat{\theta}_{n}$ gets arbitrarily close to θ with arbitrarily high probability. You don't need to spell it out like this, it suffices to say that: $\widehat{\theta}_{n}$ is consistent for θ if for any $\varepsilon>0, \operatorname{Pr}\left(\left|\widehat{\theta}_{n}-\theta\right| \geq \varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.
(d). If $\mathrm{E} \widehat{\theta}_{n}=\theta$, and $\operatorname{Var}\left(\widehat{\theta}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, Chebyshev's inequality (Lemma 4.2 in the Lecture notes) gives that for any $\varepsilon>0$

$$
\operatorname{Pr}\left(\left|\widehat{\theta}_{n}-\theta\right| \geq \varepsilon\right) \leq \frac{1}{\varepsilon^{2}} \operatorname{Var}\left(\widehat{\theta}_{n}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

which means that $\widehat{\theta}_{n} \rightarrow_{p} \theta$.
(e). Use that $F_{n}(x)$ is 1-to-1,

$$
\begin{aligned}
\operatorname{Pr}\left\{F_{n}^{-1}(1 / 4) \leq \widehat{\theta}_{n} \leq F_{n}^{-1}(3 / 4)\right\} & =\operatorname{Pr}\left\{\widehat{\theta}_{n} \leq F_{n}^{-1}(3 / 4)\right\}-\operatorname{Pr}\left\{\widehat{\theta}_{n} \leq F_{n}^{-1}(1 / 4)\right\} \\
& =\operatorname{Pr}\left\{\widehat{\theta}_{n} \leq F_{n}^{-1}(3 / 4)\right\}-\operatorname{Pr}\left\{\widehat{\theta}_{n} \leq 1 / 4\right\} \\
& =F\left(F^{-1}(3 / 4)\right)-F\left(F^{-1}(1 / 4)\right)=\frac{3}{4}-\frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

Exercise 2

(a). To find the expectation and variance, we start by finding $\mathrm{E} X^{k}$, then evaluate for $k=1,2$, and use that $\operatorname{Var}(X)=\mathrm{E} X^{2}-(\mathrm{E} X)^{2}$.

$$
\mathrm{E} X^{k}=\int_{0}^{\theta} x^{k} \frac{1}{\theta} \mathrm{~d} x=\left.\frac{1}{k+1} \frac{1}{\theta}\right|_{0} ^{\theta} x^{k+1}=\frac{1}{k+1} \frac{1}{\theta} \theta^{k+1}=\frac{\theta^{k}}{k+1}
$$

from which we get

$$
\mathrm{E} X=\frac{\theta}{2}
$$

and

$$
\operatorname{Var}(X)=\frac{\theta^{2}}{3}-\frac{\theta^{2}}{4}=\frac{\theta^{2}}{12}
$$

(b). The cdf of X is

$$
F_{X}(x)=\int_{0}^{x} \frac{1}{\theta} \mathrm{~d} y=\frac{x}{\theta}, \quad \text { for } 0 \leq x<\theta
$$

and $F_{X}(x)=0$ for $x<0$ and $F_{X}(x)=1$ for $x \geq \theta$.
(c). Let $Y_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$, with X_{1}, \ldots, X_{n} independent replicates of X. If $Y_{n} \leq y$, then $X_{1} \leq y$ and $X_{2} \leq y$ and $\ldots X_{n} \leq y$, for if one of the X_{i} were bigger than y, then $Y_{n}>y$. This means that

$$
\left\{Y_{n} \leq y\right\} \subset\left\{X_{1} \leq y\right\} \cap \cdots \cap\left\{X_{n} \leq y\right\}
$$

Conversely, if $X_{i} \leq y$ for every i, then the biggest of the X_{i} is clearly smaller than y, so $Y_{n}=\max \left(X_{1}, \ldots, X_{n}\right) \leq y$, which means that

$$
\left\{Y_{n} \leq y\right\} \supset\left\{X_{1} \leq y\right\} \cap \cdots \cap\left\{X_{n} \leq y\right\}
$$

Inclusion both ways entails that the sets are equal.
Answers along the lines of 'Since Y_{n} is the biggest of the X_{i} 's, it can only be smaller than y if all the X_{i} are smaller than y^{\prime}, should gives full score.
(d). The X_{1}, \ldots, X_{n} are independent, and $X_{i} \sim F_{X}(x)$ for each i. Using what we found in the previous exercise and this independence,

$$
\begin{aligned}
F_{Y_{n}}(y) & =\operatorname{Pr}\left(Y_{n} \leq y\right)=\operatorname{Pr}\left(\left\{X_{1} \leq y\right\} \cap \cdots \cap\left\{X_{n} \leq y\right\}\right) \\
& =\operatorname{Pr}\left(X_{1} \leq y\right) \cdots \operatorname{Pr}\left(X_{n} \leq y\right)=F_{X}(y) \cdots F_{X}(y)=\frac{y}{\theta} \cdots \frac{y}{\theta}=\left(\frac{y}{\theta}\right)^{n}
\end{aligned}
$$

for $y \in[0, \theta)$, and clearly $F_{Y_{n}}(y)=0$ for $y<0$, and $F_{Y_{n}}(y)=1$ for $y \geq \theta$.
(e). Start by finding the pdf of Y_{n}, say $f_{Y_{n}}(y)$. It is

$$
f_{Y_{n}}(y)=\frac{\mathrm{d}}{\mathrm{~d} y} F_{Y_{n}}(y)=\frac{n}{\theta}\left(\frac{y}{\theta}\right)^{n-1}
$$

for $0 \leq y \leq \theta$, and $f_{Y_{n}}(y)=0$ outside this interval. Then $\mathrm{E} Y_{n}^{k}$ is

$$
\begin{aligned}
\mathrm{E} Y_{n}^{k} & =\int_{-\infty}^{\infty} y^{k} f_{Y_{n}}(y) \mathrm{d} y=\int_{0}^{\theta} y^{k} \frac{n}{\theta}\left(\frac{y}{\theta}\right)^{n-1} \mathrm{~d} y=\frac{n}{\theta^{n}} \int_{0}^{\theta} y^{n+k-1} \mathrm{~d} y \\
& =\left.\frac{n}{\theta^{n}} \frac{1}{n+k}\right|_{0} ^{\theta} y^{n+k}=\frac{n}{\theta^{n}} \frac{1}{n+k} \theta^{n+k}=\frac{n \theta^{k}}{n+k}
\end{aligned}
$$

We then find that

$$
\mathrm{E} Y_{n}=\frac{n \theta}{n+1}
$$

and that

$$
\operatorname{Var}\left(Y_{n}\right)=\mathrm{E} Y_{n}^{2}-\left(\mathrm{E} Y_{n}\right)^{2}=\frac{n \theta^{2}}{n+2}-\frac{n^{2} \theta^{2}}{(n+1)^{2}}=\frac{n \theta^{2}}{(n+2)(n+1)^{2}}
$$

Now,

$$
\mathrm{E} \widehat{\theta}_{1}=\frac{n+1}{n} \mathrm{E} Y_{n}=\frac{n+1}{n} \frac{n}{n+1} \theta=\theta
$$

which shows that $\widehat{\theta}_{1}$ is unbiased for θ. The variance of $\widehat{\theta}_{1}$ is

$$
\operatorname{Var}\left(\widehat{\theta}_{1}\right)=\frac{(n+1)^{2}}{n^{2}} \operatorname{Var}\left(Y_{n}\right)=\frac{(n+1)^{2}}{n^{2}} \frac{n \theta^{2}}{(n+2)(n+1)^{2}}=\frac{\theta^{2}}{n(n+2)}
$$

(f). We have seen that $\mathrm{E} X_{i}=\theta / 2$ for each i. The estimator $\widehat{\theta}_{2}=(2 / n) \sum_{i=1}^{n} X_{i}$ is unbiased,

$$
\mathrm{E} \widehat{\theta}_{2}=\frac{2}{n} \sum_{i=1}^{n} \mathrm{E} X_{i}=\frac{2}{n} \frac{n \theta}{2}=\theta
$$

and, since the X_{i} 's are independent, the variance of this estimator is

$$
\operatorname{Var}\left(\widehat{\theta}_{2}\right)=\frac{4}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{4}{n^{2}} \frac{n \theta^{2}}{12}=\frac{\theta^{2}}{3 n}
$$

(g). Both estimators are unbiased, so we ought to use the estimator with the lower variance.

$$
\frac{\operatorname{Var}\left(\widehat{\theta}_{2}\right)}{\operatorname{Var}\left(\widehat{\theta}_{1}\right)}=\frac{\theta^{2} /(3 n)}{\theta^{2} /\{n(n+2)\}}=\frac{n(n+2)}{3 n}=\frac{n+2}{3} \geq \frac{4}{3}>1
$$

because $n \geq 2$. This shows that $\operatorname{Var}\left(\widehat{\theta}_{1}\right)<\operatorname{Var}\left(\widehat{\theta}_{2}\right)$ for all values of θ, so $\widehat{\theta}_{1}$ is a better estimator than $\widehat{\theta}_{2}$.

ExERCISE 3

We have $S_{t_{j}}=S_{0} \exp \left(\sigma B_{t_{j}}\right)$ with $B_{t_{j}}=(1 / \sqrt{n}) \sum_{i=1}^{j} Z_{i}$, for $j=1, \ldots, n$, and Z_{1}, \ldots, Z_{n} are independent $\mathrm{N}(0,1)$. Then

$$
Y_{t_{j}}=\log S_{t_{j}}=\log S_{0}+\sigma B_{t_{j}}
$$

and

$$
Y_{t_{j}}-Y_{t_{j-1}}=\sigma \frac{1}{\sqrt{n}} Z_{j}
$$

It is given in the exercise that if $W \sim \mathrm{~N}(0,1)$, then $\mathrm{E} W^{3}=0$ and $\mathrm{E} W^{4}=3$. We use this without comment in the following.
(a). The expectation of Z_{j}^{2} is $\mathrm{E} Z_{j}^{2}$. Therefore, using linearity of expectation

$$
\mathrm{E} \widehat{\sigma}_{n}^{2}=\sum_{j=1} \mathrm{E}\left(Y_{t_{j}}-Y_{t_{j-1}}\right)^{2}=\sigma^{2} \frac{1}{n} \sum_{j=1} \mathrm{E} Z_{j}^{2}=\sigma^{2}
$$

which shows that σ_{n}^{2} is unbiased. Since $\mathrm{E} Z_{j}^{2}=1$, and

$$
\operatorname{Var}\left(Z_{j}^{2}\right)=\mathrm{E}\left[Z_{j}^{4}\right]-\left(\mathrm{E}\left[Z_{j}^{2}\right]\right)^{2}=3-1=2
$$

it follows from the Law of large numbers (Theorem 4.3 in the Lecture notes) that

$$
\frac{1}{n} \sum_{j=1} Z_{j}^{2} \xrightarrow{p} 1
$$

and we conclude that $\widehat{\sigma}_{n}^{2} \rightarrow_{p} \sigma^{2}$, that is, $\widehat{\sigma}_{n}^{2}$ is consistent for σ^{2}. The really meticulous student might here point to PLIM. 2 (Lemma 5.2 in the Lecture notes, or Wooldridge (2019, p. 723)), treating σ^{2} is a (constant) sequence, but that is not necessary for a full score on this exercise.
(b). We have seen that $\widehat{\sigma}_{n}^{2}=(1 / n) \sum_{j=1}^{n} \sigma^{2} Z_{j}^{2}=\bar{X}_{n}$, which is the empirical average of X_{1}, \ldots, X_{n}, where $X_{j}=\sigma^{2} Z_{j}^{2}$ for $j=1, \ldots, n$. Then X_{1}, \ldots, X_{n} are independent and identically distributed random variables with expectation σ^{2} and variance

$$
\operatorname{Var}\left(X_{j}\right)=\operatorname{Var}\left(\sigma^{2} Z_{j}^{2}\right)=\sigma^{4} \operatorname{Var}\left(Z_{j}^{2}\right)=2 \sigma^{4}
$$

We can therefore use the Central limit theorem (Theorem 5.5 in the Lecture notes, or Wooldridge (2019, p. 724)), to conclude that

$$
\frac{\sqrt{n}\left(\widehat{\sigma}_{n}^{2}-\sigma^{2}\right)}{\left(2 \sigma^{4}\right)^{1 / 2}}=\frac{\sqrt{n}\left(\widehat{\sigma}_{n}^{2}-\sigma^{2}\right)}{\sqrt{2} \sigma^{2}} \xrightarrow{d} \mathrm{~N}(0,1)
$$

as $n \rightarrow \infty$.
(c). The convergence in distribution result above entails that when n is big,

$$
\operatorname{Pr}\left\{\Phi^{-1}(0.025) \leq \frac{\sqrt{n}\left(\widehat{\sigma}_{n}^{2}-\sigma^{2}\right)}{\sqrt{2} \sigma^{2}} \leq \Phi^{-1}(0.975)\right\} \approx 0.95
$$

An approximate 95 percent confidence interval is then

$$
\left[\frac{\sqrt{n} \widehat{\sigma}_{n}^{2}}{\sqrt{2} \Phi^{-1}(0.975)+\sqrt{n}}, \frac{\sqrt{n} \widehat{\sigma}_{n}^{2}}{\sqrt{2} \Phi^{-1}(0.025)+\sqrt{n}}\right]
$$

where $\Phi^{-1}(p)$ is the inverse of the standard normal cdf $\Phi(z)$, so that $\Phi^{-1}(0.975)=$ $-\Phi^{-1}(0.025)=1.96$. We tacitly assume that n is so that $\sqrt{n} \geq 1.96 \sqrt{2}=2.77$, which is okay, and needs no comment.
(d). Test: Reject $H_{0}: \sigma^{2}=2.34$ vs. $H_{A}>\sigma^{2}=2.34$, at approximately the 5 perdent significance level, if

$$
\frac{\sqrt{n}\left(\widehat{\sigma}_{n}^{2}-2.34\right)}{\sqrt{2}(2.34)} \geq \Phi^{-1}(0.95)
$$

The student might verify that the Type I error probability is,

$$
\begin{aligned}
\operatorname{Pr}(\text { Type I error }) & =\operatorname{Pr}_{2.34}\left\{\frac{\sqrt{n}\left(\widehat{\sigma}_{n}^{2}-2.34\right)}{\sqrt{2}(2.34)} \geq \Phi^{-1}(0.95)\right\} \\
& \approx 1-\Phi\left(\Phi^{-1}(0.95)\right)=1-0.95=0.05
\end{aligned}
$$

but it is not required for a full score.

References

Wooldridge, J. M. (2019). Introductory Econometrics: A Modern Approach. Seventh Edition. Cengage Learning, Boston, MA.

Department of Economics, BI Norwegian Business School
Email address: emil.a.stoltenberg@bi.no

