
PROPOSED SOLUTION TO GROUP EXAM

GRA6039 AUTUMN 2020

EMIL A. STOLTENBERG

Exercise 1

(a). In the plot in Fig. 1 we see that the data is slightly curved as x increases. Therefore,

the quadratic function g2(x) = β0 + β1x+ β2x
2 probably gives a good model.

(b). The design matrix corresponding to this model is

X =


1 x1 x21
1 x2 x22

...

1 xn x2n

 ,

and the matrix H = (XtX)−1Xt ensures that β̂ = HY is the least squares estimator.

(c). Clearly, HX = (XtX)−1XtX = IK+1, where IK+1 is the (K + 1)× (K + 1) identity

matrix. Since X consists of fixed numbers, and E [Y ] = Xβ, we have E β̂ = E [HY ] =

HE [Y ] = HXβ = β.

(d). To do this, we can use Matlab code from Homework 8. Here is a table with estimates

and the estimated standard errors of these estimators.

Estimates Standard errors

β0 −0.478 0.031

β1 3.400 0.143

β2 −2.427 0.138

The Matlab code for making this table is here

data = readtable("ex1_data.txt")

x = data.x ; y = data.y; n = length(y);

X = [1 + zeros(n,1),x,x.^2]; % The design matrix

p = length(X(1,:)); % Get dimension

betahat = inv(transpose(X)*X)*transpose(X)*y;

sigma2hat = sum((y - X*betahat).^2)/(n - p);

sebetahat = sqrt(diag(sigma2hat*inv(transpose(X)*X)));

out= round([betahat,sebetahat],3); out = array2table(out);

out.Properties.VariableNames = {’betahat’ ’se’};

(e). The plot asked for is given in Figure 1.
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Figure 1. The plot from Ex. 1(a). The data points from the ex1 data.txt

and the fitted quadratic function ĝ2(x).

(f). The spread of the data points around the fitted line appears to be increasing with x.

This indicates that the variance of the ε1, . . . , εn might not be constant. The estimated

standard errors presented in the table in (d) are based on the assumption that Var(εi) are

the same for all i. Since this assumption appears to be untenable, the estimated standard

errors in (d) cannot be trusted.

1. Exercise 2

The pdf of X is

fµ(x) =
1

2µ

(
x

2

)1/µ−1
, for x ∈ [0, 2],

with µ > 0.

(a). Find EXk, for k = 1, 2, then use that Var(X) = EX2 − (EX)2.

EXk =

∫ 2

0
xkfµ(x) dx =

1

2µ

∫ 2

0
xk
x

1/µ−1

21/µ−1
dx =

1

21/µµ

∫ 2

0
x1/µ+k−1 dx

=
1

21/µµ

1

1/µ+ k

∣∣∣∣2
0

x1/µ+k =
1

21/µ
1

1 + µk

∣∣∣∣2
0

x1/µ+k =
1

21/µ
1

1 + µk
21/µ+k =

2k

1 + µk
,

which gives that

EX =
2

1 + µ
, and Var(X) =

4

1 + 2µ
− 4

(1 + µ)2
=

4µ2

(1 + 2µ)(1 + µ)2
.

(b). For x ∈ [0, 2),

Fµ(x) =
1

µ21/µ

∫ x

0
y1/µ−1 dy =

1

21/µ

∣∣∣∣x
0

y1/µ =

(
x

2

)1/µ

,

while Fµ(x) = 0 for x < 0, and Fµ(x) = 1 for x ≥ 2.
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(c). The natural logarithm of the pdf is

log fµ(x) = − logµ− log 2 + (1/µ− 1) log(x/2),

so the log-likelihood function is

`n(µ) =
n∑
i=1

log fµ(Xi) = −n logµ− n log 2 + (1/µ− 1)
n∑
i=1

log(Xi/2).

To find the maximum likelihood estimator we differentiate with respect to µ,

d

dµ
`n(µ) = −n

µ
− 1

µ2

n∑
i=1

log(Xi/2),

then set d`n(µ)/dµ = 0, and solve for µ to find

µ̂n = − 1

n

n∑
i=1

log(Xi/2).

(d). With Y1 = − log(X1/2), since 0 < X1/2 < 1, we see that Y1 takes its values in [0,∞).

So for y > 0 we have

Pr(Y1 ≤ y) = Pr(− log(X1/2) ≤ y) = Pr(log(X1/2) ≥ −y)

= Pr(X1 ≥ 2 exp(−y)) = 1− Pr(X1 ≤ 2 exp(−y)) = 1− Fµ(2 exp(−y))

= 1−
(

2 exp(−y)

2

)1/µ

= 1− exp(−y/µ),

while Pr(Y1 ≤ y) = 0 for y < 0. We thus see that Y1 has an exponential distribution, so

that EY1 = µ and Var(Y1) = µ2 (see Homework 2 Ex. 5, and also Homework 5 Ex. 3).

(e). Since µ̂n = −(1/n)
∑n

i=1 log(Xi/2) = (1/n)
∑n

i=1 Yi, and E [Yi] = µ for each i, we

have E µ̂n = (1/n)
∑n

i=1 EYi = µ, using the linearity of expectation. The Y1, . . . , Yn are

i.i.d. random variables with mean µ and variance µ2. Write Ȳn = (1/n)
∑n

i=1 Yi. From

the Central limit theorem (see Theorem 5.5 in the Lecture notes, or Wooldridge (2019,

[C.12], p. 724)), we have that

√
n(µ̂n − µ)

µ
=

√
n(Ȳn − µ)

µ

d→ Z,

where Z ∼ N(0, 1). But by the definition of convergence in distribution (see the Lecture

notes p. 22, or Wooldridge (2019, [C.11], p. 723), or handwritten notes from Lecture 5)

this means that

Pr{
√
n(µ̂n − µ)/µ ≤ x} → Φ(x) =

∫ x

−∞

1√
2π

exp(−z2/2) dz,

for all x.
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(f). Using the convergence in distribution result from (e), we have that for some signifi-

cance level α ∈ (0, 1),

Pr{Φ−1(α/2) ≤
√
n(µ̂n − µ)/µ ≤ Φ−1(1− α/2)} ≈ Φ{Φ−1(1− α/2)}+ 1− Φ{Φ−1(α/2)}

= 1− α/2 + 1− α/2 = α,

when n is sufficiently large. Moving things around, we see that the event

{Φ−1(α/2) ≤
√
n(µ̂n − µ)

µ
≤ Φ−1(1− α/2)},

is the same as the event

{
√
nµ̂n√

n+ Φ−1(1− α/2)
≤ µ ≤

√
nµ̂n√

n+ Φ−1(α/2)
},

and we get the (1− α)× 100 percent confidence interval for µ.

(g). In this Matlab script we check by way of simulations that n = 53 is sufficiently big
for the normal approximation to kick in.

mu = 2; alpha = 0.05; n = 53; sims = 1000;

contains = zeros(1,sims);

for jj = 1:sims

YY = exprnd(mu,1,53);

muhat = mean(YY);

upper = sqrt(n)*muhat/(sqrt(n) + norminv(alpha/2));

lower = sqrt(n)*muhat/(sqrt(n) + norminv(1 -alpha/2));

contains(jj) = (lower <= mu)&(mu <= upper);

end

mean(contains) % should be close to (1 - alpha) = 0.95

2. Exercise 2

(a). Here is the Matlab script

n = 123;

sigma2 = 1.208;

beta0 = 0.432;

beta1 = 1.234;

beta2 = 2.467;

rho = -0.567;

sims = 10^3;

beta1hats = 0.*(1:sims);

for uu = 1:sims

eps = normrnd(0,1,1,n);

eta = normrnd(0,1,1,n);

xx = sqrt(sigma2).*eta;

zz = rho*eta + (1 - rho^2)^(1/2).*normrnd(0,1,1,n);

y = beta0 + beta1.*xx + beta2.*zz + eps;

beta1hats(uu) = sum((xx - mean(xx)).*y)/sum((xx - mean(xx)).^2);
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end

histogram(beta1hats,"Normalization","pdf")

xlim([-1,2])

hold on

plot([mean(beta1hats),mean(beta1hats)],[0,2.4],"Linewidth",2)

plot([beta1,beta1],[0,2.4],"Linewidth",2)

(b). The expression for β̂1 follows because

n∑
i=1

(Xi − X̄n)(Yi − Ȳn) =
n∑
i=1

(Xi − X̄n)Yi −
n∑
i=1

(Xi − X̄n)Ȳn =
n∑
i=1

(Xi − X̄n)Yi,

because
∑n

i=1(Xi − X̄n)Ȳn = 0.

(c). We use that E [Yi | X] = β0 + β1Xi + (ρ/σ)β2Xi for each i. Then

E [β̂1 | X] = E [

∑n
i=1(Xi − X̄n)Yi∑n
i=1(Xi − X̄n)2

| X] =

∑n
i=1(Xi − X̄n)E [Yi | X]∑n

i=1(Xi − X̄n)2

=

∑n
i=1(Xi − X̄n)(β0 + β1Xi + (ρ/σ)β2Xi)∑n

i=1(Xi − X̄n)2
= β1 +

ρβ2
σ
.

(d). From the expression

E [β̂1 | X] = β1 +
ρβ2
σ
,

we learn that, keeping σ > 0 constant for the moment, that β̂1 is an unbiased estimator if

ρ = 0 or β2 = 0. This means that when we are interested in inference on β1, we only need

to control for Zi (that is, include Zi when estimating β1) when Zi is correlated with Xi

and with Yi. We can make a drawing of this.

X
β1

Y

Z

β2ρ

Here Zi is what is often called a confounder. If ρ = 0 or β2 = 0 (in which case we would

erase the associated arrow), then Zi is no longer a confounder, and we do not need to

worry about Zi when estimating β1.
1

1An excellent popular science book on confounding and related matters is Pearl and Mackenzie (2018).

In this book, Pearl says some things that I disagree with, so if you read it, do also read the blog post

Gelman (2019) or pages Section 3 in the introduction (kappa) to my PhD-thesis, Stoltenberg (2020).

https://en.wikipedia.org/wiki/Confounding
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(e). The estimator b̂n is

b̂n =

∑n
i=1WiXi∑n
i=1W

2
i

=
(1/n)

∑n
i=1WiXi

(1/n)
∑n

i=1W
2
i

.

Look at the numerator (1/n)
∑n

i=1WiXi, where W1X1, . . . ,WnXn are i.i.d. random vari-

ables with expectation

EW1X1 = EW1(bW1 + u1) = bEW 2
1 + Eu1 = b,

since EW 2
1 = 1 and Eu1 = 0, and variance

Var(W1X1) = E (W1X1)
2 − (EW1X1)

2 = E (W1X1)
2 − b2EW 2

1 (bW1 + u1)
2 − b2

= b2 E [W 4
1 ] + 2bE [W 3

1 ] E [u1] + E [W 2
1 ] E [u21]− b2 = 3b2 − b2 = b2,

which is finite, so the Law of large numbers (LLN) yields

1

n

n∑
i=1

WiXi
p→ EW1X1 = b.

In the denominator (1/n)
∑n

i=1W
2
i , the W 2

1 , . . . ,W
2
n are i.i.d. random variables, with

EW 2
1 = 1, and

Var(W 2
1 ) = EW 4

1 − (EW 2
1 )2 = 3− 1 = 2.

So by the LLN, (1/n)
∑n

i=1W
2
i →p EW 2

1 = 1. Using the PLIM.2 rules, we conclude that

b̂n =
(1/n)

∑n
i=1WiXi

(1/n)
∑n

i=1W
2
i

p→ b

1
= b.

(f). Using the result from (b), and writing W̄n = (1/n)
∑n

i=1Wi,

β̃1 =

∑n
i=1{X̂i − (1/n)

∑n
j=1 X̂j}Yi∑n

i=1{X̂i − (1/n)
∑n

j=1 X̂j}2
=

1

b̂n

∑n
i=1(Wi − W̄n)Yi∑n
i=1(Wi − W̄n)2

=
1

b̂n

∑n
i=1(Wi − W̄n){β0 + β1Xi + β2Zi + εi}∑n

i=1(Wi − W̄n)2
=

1

b̂n

{
β1

∑n
i=1(Wi − W̄n)Xi∑n
i=1(Wi − W̄n)2

+ β2Bn + Cn
}

=
1

b̂n

{
β1

∑n
i=1(Wi − W̄n)(bWi + ui)∑n

i=1(Wi − W̄n)2
+ β2Bn + Cn

}
=

1

b̂n
(bβ1 + β1An + β2Bn + Cn),

where

An =

∑n
i=1(Wi − W̄n)ui∑n
i=1(Wi − W̄n)2

, Bn =

∑n
i=1(Wi − W̄n)Zi∑n
i=1(Wi − W̄n)2

, Cn =

∑n
i=1(Wi − W̄n)εi∑n
i=1(Wi − W̄n)2

.

To get this expression for β̃1 we use that
∑n

i=1(Wi−W̄n) = 0, and that
∑n

i=1(Wi−W̄n)Wi =∑n
i=1(Wi − W̄n)2, which is what was shown in (b). Now, write,

An =

∑n
i=1(Wi − W̄n)ui∑n
i=1(Wi − W̄n)2

=
(1/n)

∑n
i=1(Wi − W̄n)ui

(1/n)
∑n

i=1(Wi − W̄n)2
.
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It is given in the exercise that (1/n)
∑n

i=1(Wi− W̄n)2 →p 1, so we only need to prove that

the numerator tends to 0 in probability. Write

1

n

n∑
i=1

(Wi − W̄n)ui =
1

n

n∑
i=1

Wiui − W̄n
1

n

n∑
i=1

ui.

TheW1u1, . . . ,Wnun are i.i.d. random variables with expectation E [Wiui] = E [Wi] E [ui] =

0, using independence, and variance Var(Wiui) = E [W 2
i u

2
i ] = E [W 2

i ] E [u2i ] = 1. There-

fore,

1

n

n∑
i=1

Wiui
p→ 0,

by the LLN. Since the W1, . . . ,Wn are i.i.d. N(0, 1), and the u1, . . . , un are i.i.d. N(0, 1),

the LLN gives

W̄n =
1

n

n∑
i=1

Wi
p→ 0, and

1

n

n∑
i=1

ui
p→ 0

Therefore PLIM.2 (Lemma 5.2(ii) in the Lecture notes, or Property PLIM.2(ii) in Wooldridge

(2019, p. 723)), gives

W̄n
1

n

n∑
i=1

ui
p→ 0.

We can now use PLIM.2(i) to conclude that

An =
1

n

n∑
i=1

Wiui − W̄n
1

n

n∑
i=1

ui
p→ 0.

(g). We have that b̂n →p b 6= 0, and that An, Bn and Cn tend in probability to zero.

Using the expression we found above,

β̃1 =
1

b̂n
(bβ1 + β1An + β2Bn + Cn) =

b

b̂n
β1 + β1

An

b̂n
+ β2

Bn

b̂n
+
Cn

b̂n
.

Now, we use PLIM.2(iii) to conclude that

b

b̂n
β1

p→ β1, β1
An

b̂n

p→ 0, β2
Bn

b̂n

p→ 0, and
Cn

b̂n

p→ 0,

and the PLIM.2(i) to conclude that

β̃1 =
b

b̂n
β1 + β1

An

b̂n
+ β2

Bn

b̂n
+
Cn

b̂n

p→ β1,

which is rather cool, and which you can learn more about in econometrics courses that

cover so-called ‘instrumental variables’.
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variance bias2 mse

β̂1 0.0482 0.0623 0.1105

β̃1 0.2999 0.0011 0.3010
Table 1. Results of simulations as described in Ex. 3(h). The estimates of

the variance, bias2, and the mean squared error are based on 1000 simulated

datasets.

(h). The results from my simulations are summarised in Table 1. In this table we see

that the estimator β̃1 is much less biased for β1 than β̂1. This is because ρ = −0.123 6= 0,

and β2 6= 0, and is what we would expect from our finding in (c). The variance of β̃1 is,

however, much higher than the variance of β̂1, leading to β̂1 having a lower mean squared

error than β̃1. So in terms of the mean squared error, β̂1 is the better estimator.

The reason for the variance of β̃1 being higher than the variance of β̂1 is twofold:

First, the estimator β̃1 is based on the predicted values X̂i instead of Xi. The predicted

values X̂i are less spread out than the Xi, and therefore contain less information about

the relationshiop between Xi and Yi. Second, in forming β̃1, we first estimate b. This

estimating step also comes with its uncertainty (variance) which is then by β̃1.

The morale of all this is that if a confounder is present, but the confounding is not

that strong, meaning that ρ or β2 are close to 0, then we might want to accept some bias,

because accepting some bias leads to less uncertain estimates, and perhaps a smaller mean

squared error. In other words, the biased and inconsistent estimator β̂1 might be a better

estimator than the consistent estimator β̃1, even in the presence of a confounder.

Here is the Matlab code where I do the simulations that are asked for

n = 123;

beta0 = 0.432;

beta1 = 1.234;

beta2 = 2.467;

rho = -0.123;

b = 0.456;

sims = 10^3;

beta1hats = 0.*(1:sims);

beta1hatsIV = 0.*(1:sims) ;

for jj = 1:sims

eps = normrnd(0,1,1,n) ;

uu = normrnd(0,1,1,n);

ww = normrnd(0,1,1,n);

xx = b.*ww + uu;

zz = rho.*uu + (1 - rho^2)^(1/2).*normrnd(0,1,1,n);

y = beta0 + beta1.*xx + beta2.*zz + eps;

beta1hats(jj) = sum((xx - mean(xx)).*y)/sum((xx - mean(xx)).^2);

bhat = sum(xx.*ww)/sum(ww.^2);

xhat = bhat.*ww;
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beta1hatsIV(jj) = sum((xhat - mean(xhat)).*y)/sum((xhat - mean(xhat)).^2);

end

% Make a table

vars = [var(beta1hats);var(beta1hatsIV)];

bias2 = [(mean(beta1hats) - beta1)^2;(mean(beta1hatsIV) - beta1)^2]

mse = [mean((beta1hats - beta1).^2);mean((beta1hatsIV - beta1).^2)]

out= round([vars,bias2,mse],3);

out = array2table(out);

out.Properties.VariableNames = {’variance’ ’bias2’ ’mse’};

out
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