PROPOSED SOLUTION TO GROUP EXAM
 GRA6039 AUTUMN 2020

EMIL A. STOLTENBERG

Exercise 1

(a). In the plot in Fig. 1 we see that the data is slightly curved as x increases. Therefore, the quadratic function $g_{2}(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$ probably gives a good model.
(b). The design matrix corresponding to this model is

$$
X=\left(\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
& \vdots & \\
1 & x_{n} & x_{n}^{2}
\end{array}\right),
$$

and the matrix $H=\left(X^{\mathrm{t}} X\right)^{-1} X^{\mathrm{t}}$ ensures that $\widehat{\beta}=H Y$ is the least squares estimator.
(c). Clearly, $H X=\left(X^{\mathrm{t}} X\right)^{-1} X^{\mathrm{t}} X=I_{K+1}$, where I_{K+1} is the $(K+1) \times(K+1)$ identity matrix. Since X consists of fixed numbers, and $\mathrm{E}[Y]=X \beta$, we have $\mathrm{E} \widehat{\beta}=\mathrm{E}[H Y]=$ $H \mathrm{E}[Y]=H X \beta=\beta$.
(d). To do this, we can use Matlab code from Homework 8. Here is a table with estimates and the estimated standard errors of these estimators.

	Estimates	Standard errors
β_{0}	-0.478	0.031
β_{1}	3.400	0.143
β_{2}	-2.427	0.138

The Matlab code for making this table is here

```
data = readtable("ex1_data.txt")
x = data.x ; y = data.y; n = length(y);
X = [1 + zeros(n,1),x,x.^2]; % The design matrix
p = length(X(1,:)); % Get dimension
betahat = inv(transpose(X)*X)*transpose(X)*y;
sigma2hat = sum((y - X*betahat).^2)/(n - p);
sebetahat = sqrt(diag(sigma2hat*inv(transpose(X)*X)));
out= round([betahat,sebetahat],3); out = array2table(out);
out.Properties.VariableNames = {'betahat' 'se'};
```

(e). The plot asked for is given in Figure 1.

Figure 1. The plot from Ex. 1(a). The data points from the ex1_data.txt and the fitted quadratic function $\widehat{g}_{2}(x)$.
(f). The spread of the data points around the fitted line appears to be increasing with x. This indicates that the variance of the $\varepsilon_{1}, \ldots, \varepsilon_{n}$ might not be constant. The estimated standard errors presented in the table in (d) are based on the assumption that $\operatorname{Var}\left(\varepsilon_{i}\right)$ are the same for all i. Since this assumption appears to be untenable, the estimated standard errors in (d) cannot be trusted.

1. Exercise 2

The pdf of X is

$$
f_{\mu}(x)=\frac{1}{2 \mu}\left(\frac{x}{2}\right)^{1 / \mu-1}, \quad \text { for } x \in[0,2]
$$

with $\mu>0$.
(a). Find $\mathrm{E} X^{k}$, for $k=1,2$, then use that $\operatorname{Var}(X)=\mathrm{E} X^{2}-(\mathrm{E} X)^{2}$.

$$
\begin{aligned}
\mathrm{E} X^{k} & =\int_{0}^{2} x^{k} f_{\mu}(x) \mathrm{d} x=\frac{1}{2 \mu} \int_{0}^{2} x^{k} \frac{x^{1 / \mu-1}}{2^{1 / \mu-1}} \mathrm{~d} x=\frac{1}{2^{1 / \mu} \mu} \int_{0}^{2} x^{1 / \mu+k-1} \mathrm{~d} x \\
& =\left.\frac{1}{2^{1 / \mu} \mu} \frac{1}{1 / \mu+k}\right|_{0} ^{2} x^{1 / \mu+k}=\left.\frac{1}{2^{1 / \mu}} \frac{1}{1+\mu k}\right|_{0} ^{2} x^{1 / \mu+k}=\frac{1}{2^{1 / \mu}} \frac{1}{1+\mu k} 2^{1 / \mu+k}=\frac{2^{k}}{1+\mu k},
\end{aligned}
$$

which gives that

$$
\mathrm{E} X=\frac{2}{1+\mu}, \quad \text { and } \quad \operatorname{Var}(X)=\frac{4}{1+2 \mu}-\frac{4}{(1+\mu)^{2}}=\frac{4 \mu^{2}}{(1+2 \mu)(1+\mu)^{2}} .
$$

(b). For $x \in[0,2)$,

$$
F_{\mu}(x)=\frac{1}{\mu 2^{1 / \mu}} \int_{0}^{x} y^{1 / \mu-1} \mathrm{~d} y=\left.\frac{1}{2^{1 / \mu}}\right|_{0} ^{x} y^{1 / \mu}=\left(\frac{x}{2}\right)^{1 / \mu},
$$

while $F_{\mu}(x)=0$ for $x<0$, and $F_{\mu}(x)=1$ for $x \geq 2$.
(c). The natural logarithm of the pdf is

$$
\log f_{\mu}(x)=-\log \mu-\log 2+(1 / \mu-1) \log (x / 2)
$$

so the log-likelihood function is

$$
\ell_{n}(\mu)=\sum_{i=1}^{n} \log f_{\mu}\left(X_{i}\right)=-n \log \mu-n \log 2+(1 / \mu-1) \sum_{i=1}^{n} \log \left(X_{i} / 2\right) .
$$

To find the maximum likelihood estimator we differentiate with respect to μ,

$$
\frac{\mathrm{d}}{\mathrm{~d} \mu} \ell_{n}(\mu)=-\frac{n}{\mu}-\frac{1}{\mu^{2}} \sum_{i=1}^{n} \log \left(X_{i} / 2\right),
$$

then set $\mathrm{d} \ell_{n}(\mu) / \mathrm{d} \mu=0$, and solve for μ to find

$$
\widehat{\mu}_{n}=-\frac{1}{n} \sum_{i=1}^{n} \log \left(X_{i} / 2\right) .
$$

(d). With $Y_{1}=-\log \left(X_{1} / 2\right)$, since $0<X_{1} / 2<1$, we see that Y_{1} takes its values in $[0, \infty)$. So for $y>0$ we have

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{1} \leq y\right) & =\operatorname{Pr}\left(-\log \left(X_{1} / 2\right) \leq y\right)=\operatorname{Pr}\left(\log \left(X_{1} / 2\right) \geq-y\right) \\
& =\operatorname{Pr}\left(X_{1} \geq 2 \exp (-y)\right)=1-\operatorname{Pr}\left(X_{1} \leq 2 \exp (-y)\right)=1-F_{\mu}(2 \exp (-y)) \\
& =1-\left(\frac{2 \exp (-y)}{2}\right)^{1 / \mu}=1-\exp (-y / \mu)
\end{aligned}
$$

while $\operatorname{Pr}\left(Y_{1} \leq y\right)=0$ for $y<0$. We thus see that Y_{1} has an exponential distribution, so that $\mathrm{E} Y_{1}=\mu$ and $\operatorname{Var}\left(Y_{1}\right)=\mu^{2}$ (see Homework 2 Ex. 5, and also Homework 5 Ex. 3).
(e). Since $\widehat{\mu}_{n}=-(1 / n) \sum_{i=1}^{n} \log \left(X_{i} / 2\right)=(1 / n) \sum_{i=1}^{n} Y_{i}$, and $\mathrm{E}\left[Y_{i}\right]=\mu$ for each i, we have $\mathrm{E} \widehat{\mu}_{n}=(1 / n) \sum_{i=1}^{n} \mathrm{E} Y_{i}=\mu$, using the linearity of expectation. The Y_{1}, \ldots, Y_{n} are i.i.d. random variables with mean μ and variance μ^{2}. Write $\bar{Y}_{n}=(1 / n) \sum_{i=1}^{n} Y_{i}$. From the Central limit theorem (see Theorem 5.5 in the Lecture notes, or Wooldridge (2019, [C.12], p. 724)), we have that

$$
\frac{\sqrt{n}\left(\widehat{\mu}_{n}-\mu\right)}{\mu}=\frac{\sqrt{n}\left(\bar{Y}_{n}-\mu\right)}{\mu} \xrightarrow{d} Z,
$$

where $Z \sim \mathrm{~N}(0,1)$. But by the definition of convergence in distribution (see the Lecture notes p. 22, or Wooldridge (2019, [C.11], p. 723), or handwritten notes from Lecture 5) this means that

$$
\operatorname{Pr}\left\{\sqrt{n}\left(\widehat{\mu}_{n}-\mu\right) / \mu \leq x\right\} \rightarrow \Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-z^{2} / 2\right) \mathrm{d} z
$$

for all x.
(f). Using the convergence in distribution result from (e), we have that for some significance level $\alpha \in(0,1)$,

$$
\begin{aligned}
\operatorname{Pr}\left\{\Phi^{-1}(\alpha / 2) \leq \sqrt{n}\left(\widehat{\mu}_{n}-\mu\right) / \mu \leq \Phi^{-1}(1-\alpha / 2)\right\} & \approx \Phi\left\{\Phi^{-1}(1-\alpha / 2)\right\}+1-\Phi\left\{\Phi^{-1}(\alpha / 2)\right\} \\
& =1-\alpha / 2+1-\alpha / 2=\alpha
\end{aligned}
$$

when n is sufficiently large. Moving things around, we see that the event

$$
\left\{\Phi^{-1}(\alpha / 2) \leq \frac{\sqrt{n}\left(\widehat{\mu}_{n}-\mu\right)}{\mu} \leq \Phi^{-1}(1-\alpha / 2)\right\}
$$

is the same as the event

$$
\left\{\frac{\sqrt{n} \widehat{\mu}_{n}}{\sqrt{n}+\Phi^{-1}(1-\alpha / 2)} \leq \mu \leq \frac{\sqrt{n} \widehat{\mu}_{n}}{\sqrt{n}+\Phi^{-1}(\alpha / 2)}\right\}
$$

and we get the $(1-\alpha) \times 100$ percent confidence interval for μ.
(g). In this Matlab script we check by way of simulations that $n=53$ is sufficiently big for the normal approximation to kick in.

```
mu = 2; alpha = 0.05; n = 53; sims = 1000;
contains = zeros(1,sims);
for jj = 1:sims
    YY = exprnd(mu,1,53);
    muhat = mean(YY);
    upper = sqrt(n)*muhat/(sqrt(n) + norminv(alpha/2));
    lower = sqrt(n)*muhat/(sqrt(n) + norminv(1 -alpha/2));
    contains(jj) = (lower <= mu)&(mu <= upper);
end
mean(contains) % should be close to (1 - alpha) = 0.95
```


2. ExERCISE 2

(a). Here is the Matlab script
n = 123;
sigma2 = 1.208;
beta0 $=0.432$;
beta1 = 1.234;
beta2 = 2.467;
rho $=-0.567$;
sims $=10^{\wedge} 3$;
beta1hats = 0.*(1:sims);
for u = 1:sims
eps $=\operatorname{normrnd}(0,1,1, n)$;
eta $=$ normrnd ($0,1,1, n$);
xx = sqrt(sigma2).*eta;
$\mathrm{zz}=$ rho*eta $+\left(1-r h o^{\wedge}\right)^{\wedge}(1 / 2) . *$ normrnd $(0,1,1, n) ;$
$\mathrm{y}=$ beta0 + beta1.*xx + beta2.*zz + eps;
beta1hats(uu) $=\operatorname{sum}((x x-\operatorname{mean}(x x)) . * y) / \operatorname{sum}\left((x x-\operatorname{mean}(x x)) .^{\wedge} 2\right)$;
end

```
histogram(beta1hats,"Normalization","pdf")
xlim([-1,2])
hold on
plot([mean(beta1hats),mean(beta1hats)],[0,2.4],"Linewidth", 2)
plot([beta1,beta1],[0,2.4],"Linewidth", 2)
```

(b). The expression for $\widehat{\beta}_{1}$ follows because

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) Y_{i}-\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) \bar{Y}_{n}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) Y_{i}
$$

because $\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) \bar{Y}_{n}=0$.
(c). We use that $\mathrm{E}\left[Y_{i} \mid X\right]=\beta_{0}+\beta_{1} X_{i}+(\rho / \sigma) \beta_{2} X_{i}$ for each i. Then

$$
\begin{aligned}
\mathrm{E}\left[\widehat{\beta}_{1} \mid X\right] & =\mathrm{E}\left[\left.\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) Y_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}} \right\rvert\, X\right]=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) \mathrm{E}\left[Y_{i} \mid X\right]}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(\beta_{0}+\beta_{1} X_{i}+(\rho / \sigma) \beta_{2} X_{i}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}=\beta_{1}+\frac{\rho \beta_{2}}{\sigma} .
\end{aligned}
$$

(d). From the expression

$$
\mathrm{E}\left[\widehat{\beta}_{1} \mid X\right]=\beta_{1}+\frac{\rho \beta_{2}}{\sigma}
$$

we learn that, keeping $\sigma>0$ constant for the moment, that $\widehat{\beta}_{1}$ is an unbiased estimator if $\rho=0$ or $\beta_{2}=0$. This means that when we are interested in inference on β_{1}, we only need to control for Z_{i} (that is, include Z_{i} when estimating β_{1}) when Z_{i} is correlated with X_{i} and with Y_{i}. We can make a drawing of this.

Here Z_{i} is what is often called a confounder. If $\rho=0$ or $\beta_{2}=0$ (in which case we would erase the associated arrow), then Z_{i} is no longer a confounder, and we do not need to worry about Z_{i} when estimating $\beta_{1}{ }_{1}^{1}$

[^0](e). The estimator \widehat{b}_{n} is
$$
\widehat{b}_{n}=\frac{\sum_{i=1}^{n} W_{i} X_{i}}{\sum_{i=1}^{n} W_{i}^{2}}=\frac{(1 / n) \sum_{i=1}^{n} W_{i} X_{i}}{(1 / n) \sum_{i=1}^{n} W_{i}^{2}} .
$$

Look at the numerator $(1 / n) \sum_{i=1}^{n} W_{i} X_{i}$, where $W_{1} X_{1}, \ldots, W_{n} X_{n}$ are i.i.d. random variables with expectation

$$
\mathrm{E} W_{1} X_{1}=\mathrm{E} W_{1}\left(b W_{1}+u_{1}\right)=b \mathrm{E} W_{1}^{2}+\mathrm{E} u_{1}=b,
$$

since $\mathrm{E} W_{1}^{2}=1$ and $\mathrm{E} u_{1}=0$, and variance

$$
\begin{aligned}
\operatorname{Var}\left(W_{1} X_{1}\right) & =\mathrm{E}\left(W_{1} X_{1}\right)^{2}-\left(\mathrm{E} W_{1} X_{1}\right)^{2}=\mathrm{E}\left(W_{1} X_{1}\right)^{2}-b^{2} \mathrm{E} W_{1}^{2}\left(b W_{1}+u_{1}\right)^{2}-b^{2} \\
& =b^{2} \mathrm{E}\left[W_{1}^{4}\right]+2 b \mathrm{E}\left[W_{1}^{3}\right] \mathrm{E}\left[u_{1}\right]+\mathrm{E}\left[W_{1}^{2}\right] \mathrm{E}\left[u_{1}^{2}\right]-b^{2}=3 b^{2}-b^{2}=b^{2},
\end{aligned}
$$

which is finite, so the Law of large numbers (LLN) yields

$$
\frac{1}{n} \sum_{i=1}^{n} W_{i} X_{i} \xrightarrow{p} \mathrm{E} W_{1} X_{1}=b .
$$

In the denominator $(1 / n) \sum_{i=1}^{n} W_{i}^{2}$, the $W_{1}^{2}, \ldots, W_{n}^{2}$ are i.i.d. random variables, with $\mathrm{E} W_{1}^{2}=1$, and

$$
\operatorname{Var}\left(W_{1}^{2}\right)=\mathrm{E} W_{1}^{4}-\left(\mathrm{E} W_{1}^{2}\right)^{2}=3-1=2 .
$$

So by the LLN, $(1 / n) \sum_{i=1}^{n} W_{i}^{2} \rightarrow_{p} \mathrm{E} W_{1}^{2}=1$. Using the PLIM. 2 rules, we conclude that

$$
\widehat{b}_{n}=\frac{(1 / n) \sum_{i=1}^{n} W_{i} X_{i}}{(1 / n) \sum_{i=1}^{n} W_{i}^{2}} \xrightarrow{p} \frac{b}{1}=b .
$$

(f). Using the result from (b), and writing $\bar{W}_{n}=(1 / n) \sum_{i=1}^{n} W_{i}$,

$$
\begin{aligned}
\widetilde{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left\{\widehat{X}_{i}-(1 / n) \sum_{j=1}^{n} \widehat{X}_{j}\right\} Y_{i}}{\sum_{i=1}^{n}\left\{\widehat{X}_{i}-(1 / n) \sum_{j=1}^{n} \widehat{X}_{j}\right\}^{2}}=\frac{1}{\widehat{b}_{n}} \frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right) Y_{i}}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)^{2}} \\
& =\frac{1}{\widehat{b}_{n}} \frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)\left\{\beta_{0}+\beta_{1} X_{i}+\beta_{2} Z_{i}+\varepsilon_{i}\right\}}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)^{2}}=\frac{1}{\widehat{b}_{n}}\left\{\beta_{1} \frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right) X_{i}}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)^{2}}+\beta_{2} B_{n}+C_{n}\right\} \\
& =\frac{1}{\widehat{b}_{n}}\left\{\beta_{1} \frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)\left(b W_{i}+u_{i}\right)}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)^{2}}+\beta_{2} B_{n}+C_{n}\right\}=\frac{1}{\widehat{b}_{n}}\left(b \beta_{1}+\beta_{1} A_{n}+\beta_{2} B_{n}+C_{n}\right),
\end{aligned}
$$

where

$$
A_{n}=\frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right) u_{i}}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)^{2}}, \quad B_{n}=\frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right) Z_{i}}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)^{2}}, \quad C_{n}=\frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right) \varepsilon_{i}}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)^{2}} .
$$

To get this expression for $\widetilde{\beta}_{1}$ we use that $\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)=0$, and that $\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right) W_{i}=$ $\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)^{2}$, which is what was shown in (b). Now, write,

$$
A_{n}=\frac{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right) u_{i}}{\sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)^{2}}=\frac{(1 / n) \sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right) u_{i}}{(1 / n) \sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)^{2}} .
$$

It is given in the exercise that $(1 / n) \sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right)^{2} \rightarrow_{p} 1$, so we only need to prove that the numerator tends to 0 in probability. Write

$$
\frac{1}{n} \sum_{i=1}^{n}\left(W_{i}-\bar{W}_{n}\right) u_{i}=\frac{1}{n} \sum_{i=1}^{n} W_{i} u_{i}-\bar{W}_{n} \frac{1}{n} \sum_{i=1}^{n} u_{i}
$$

The $W_{1} u_{1}, \ldots, W_{n} u_{n}$ are i.i.d. random variables with expectation $\mathrm{E}\left[W_{i} u_{i}\right]=\mathrm{E}\left[W_{i}\right] \mathrm{E}\left[u_{i}\right]=$ 0 , using independence, and variance $\operatorname{Var}\left(W_{i} u_{i}\right)=\mathrm{E}\left[W_{i}^{2} u_{i}^{2}\right]=\mathrm{E}\left[W_{i}^{2}\right] \mathrm{E}\left[u_{i}^{2}\right]=1$. Therefore,

$$
\frac{1}{n} \sum_{i=1}^{n} W_{i} u_{i} \xrightarrow{p} 0
$$

by the LLN. Since the W_{1}, \ldots, W_{n} are i.i.d. $\mathrm{N}(0,1)$, and the u_{1}, \ldots, u_{n} are i.i.d. $\mathrm{N}(0,1)$, the LLN gives

$$
\bar{W}_{n}=\frac{1}{n} \sum_{i=1}^{n} W_{i} \xrightarrow{p} 0, \quad \text { and } \quad \frac{1}{n} \sum_{i=1}^{n} u_{i} \xrightarrow{p} 0
$$

Therefore PLIM. 2 (Lemma 5.2(ii) in the Lecture notes, or Property PLIM.2(ii) in Wooldridge (2019, p. 723)), gives

$$
\bar{W}_{n} \frac{1}{n} \sum_{i=1}^{n} u_{i} \xrightarrow{p} 0 .
$$

We can now use PLIM.2(i) to conclude that

$$
A_{n}=\frac{1}{n} \sum_{i=1}^{n} W_{i} u_{i}-\bar{W}_{n} \frac{1}{n} \sum_{i=1}^{n} u_{i} \xrightarrow{p} 0
$$

(g). We have that $\widehat{b}_{n} \rightarrow_{p} b \neq 0$, and that A_{n}, B_{n} and C_{n} tend in probability to zero. Using the expression we found above,

$$
\widetilde{\beta}_{1}=\frac{1}{\widehat{b}_{n}}\left(b \beta_{1}+\beta_{1} A_{n}+\beta_{2} B_{n}+C_{n}\right)=\frac{b}{\widehat{b}_{n}} \beta_{1}+\beta_{1} \frac{A_{n}}{\widehat{b}_{n}}+\beta_{2} \frac{B_{n}}{\widehat{b}_{n}}+\frac{C_{n}}{\widehat{b}_{n}}
$$

Now, we use PLIM.2(iii) to conclude that

$$
\frac{b}{\widehat{b}_{n}} \beta_{1} \xrightarrow{p} \beta_{1}, \quad \beta_{1} \frac{A_{n}}{\widehat{b}_{n}} \xrightarrow{p} 0, \quad \beta_{2} \frac{B_{n}}{\widehat{b}_{n}} \xrightarrow{p} 0, \quad \text { and } \quad \frac{C_{n}}{\widehat{b}_{n}} \xrightarrow{p} 0,
$$

and the PLIM.2(i) to conclude that

$$
\widetilde{\beta}_{1}=\frac{b}{\widehat{b}_{n}} \beta_{1}+\beta_{1} \frac{A_{n}}{\widehat{b}_{n}}+\beta_{2} \frac{B_{n}}{\widehat{b}_{n}}+\frac{C_{n}}{\widehat{b}_{n}} \xrightarrow{p} \beta_{1},
$$

which is rather cool, and which you can learn more about in econometrics courses that cover so-called 'instrumental variables'.

	variance	bias 2	mse
$\widehat{\beta}_{1}$	0.0482	0.0623	0.1105
$\widetilde{\beta}_{1}$	0.2999	0.0011	0.3010

TABLE 1. Results of simulations as described in Ex. 3(h). The estimates of the variance, bias 2, and the mean squared error are based on 1000 simulated datasets.
(h). The results from my simulations are summarised in Table 1. In this table we see that the estimator $\widetilde{\beta}_{1}$ is much less biased for β_{1} than $\widehat{\beta}_{1}$. This is because $\rho=-0.123 \neq 0$, and $\beta_{2} \neq 0$, and is what we would expect from our finding in (c). The variance of $\widetilde{\beta}_{1}$ is, however, much higher than the variance of $\widehat{\beta}_{1}$, leading to $\widehat{\beta}_{1}$ having a lower mean squared error than $\widetilde{\beta}_{1}$. So in terms of the mean squared error, $\widehat{\beta}_{1}$ is the better estimator.

The reason for the variance of $\widetilde{\beta}_{1}$ being higher than the variance of $\widehat{\beta}_{1}$ is twofold: First, the estimator $\widetilde{\beta}_{1}$ is based on the predicted values \widehat{X}_{i} instead of X_{i}. The predicted values \widehat{X}_{i} are less spread out than the X_{i}, and therefore contain less information about the relationshiop between X_{i} and Y_{i}. Second, in forming $\widetilde{\beta}_{1}$, we first estimate b. This estimating step also comes with its uncertainty (variance) which is then by $\widetilde{\beta}_{1}$.

The morale of all this is that if a confounder is present, but the confounding is not that strong, meaning that ρ or β_{2} are close to 0 , then we might want to accept some bias, because accepting some bias leads to less uncertain estimates, and perhaps a smaller mean squared error. In other words, the biased and inconsistent estimator $\widehat{\beta}_{1}$ might be a better estimator than the consistent estimator $\widetilde{\beta}_{1}$, even in the presence of a confounder.

Here is the Matlab code where I do the simulations that are asked for

```
n = 123;
beta0 = 0.432;
beta1 = 1.234;
beta2 = 2.467;
rho = -0.123;
b = 0.456;
sims = 10^3;
beta1hats = 0.*(1:sims);
beta1hatsIV = O.*(1:sims) ;
for jj = 1:sims
    eps = normrnd(0,1,1,n) ;
    uu = normrnd(0,1,1,n);
    ww = normrnd(0,1,1,n);
    xx = b.*ww + uu;
    zz = rho.*uu + (1 - rho^2)^(1/2).*normrnd(0,1,1,n);
    y = beta0 + beta1.*xx + beta2.*zz + eps;
    beta1hats(jj) = sum((xx - mean(xx)).*y)/sum((xx - mean(xx)).^2);
    bhat = sum(xx.*ww)/sum(ww.^2);
    xhat = bhat.*ww;
```

```
    beta1hatsIV(jj) = sum((xhat - mean(xhat)).*y)/sum((xhat - mean(xhat)).^2);
end
% Make a table
vars = [var(beta1hats);var(beta1hatsIV)];
bias2 = [(mean(beta1hats) - beta1)^2;(mean(beta1hatsIV) - beta1)^2]
mse = [mean((beta1hats - beta1).^2);mean((beta1hatsIV - beta1).^2)]
out= round([vars,bias2,mse],3);
out = array2table(out);
out.Properties.VariableNames = {'variance' 'bias2' 'mse'};
out
```


References

Gelman, A. (2019). "The Book of Why" by Pearl and Mackenzie. https://statmodeling. stat.columbia.edu/2019/01/08/book-pearl-mackenzie/. Accessed: 6 January 2020.

Pearl, J. and Mackenzie, D. (2018). The Book of Why: The New Science of Cause and Effect. Basic Books, New York.
Stoltenberg, E. A. (2020). Epidemiological, econometric, and decision theoretic applications of statistical inference. PhD thesis, Department of Mathematics, University of Oslo. https://www.duo.uio.no/handle/10852/80949?show=full.
Wooldridge, J. M. (2019). Introductory Econometrics: A Modern Approach. Seventh Edition. Cengage Learning, Boston, MA.

Department of Economics, BI Norwegian Business School
Email address: emil.a.stoltenberg@bi.no

[^0]: ${ }^{1}$ An excellent popular science book on confounding and related matters is Pearl and Mackenzie (2018). In this book, Pearl says some things that I disagree with, so if you read it, do also read the blog post Gelman 2019) or pages Section 3 in the introduction (kappa) to my PhD-thesis, Stoltenberg (2020).

