
BI Norwegian Business School

Group exam: GRA 6039 – Econometrics with programming

With: Emil Aas Stoltenberg

Handed out: November 13, 12:00.

Due date: November 20, 12:00.

Permitted aids: Lecture notes, books, Google, stackoverflow, etc.

Impermissible aids: People not in your group.

Group size: One, two, or three.

Format for your answer: A .pdf-file with text, mathematics, and Matlab code. You

are required to write on a machine, Word, Latex, or the like. You do not need to hand

in your .m-file, but the Matlab code you use to solve the exam should be included at

the end of the .pdf-document you hand in.

Instructions: Brevity is beautiful. Be as concise as you can.

This exam set contains three exercises and comprises five pages.

Exercise 1. The plot in Figure 1 shows data that stem from a model of the form

Yi = gK(xi) + εi, for i = 1, . . . , n,

where ε1, . . . , εn are independent random variables with mean zero and Var(εi) = σ2
i for i =

1, . . . , n, and the x1, . . . , xn are fixed numbers (not random variables), and

gK(x) =

K∑
j=0

βjx
j , for some K ≥ 0.

You can find these data in the file ex1 data.txt, and read them into Matlab by writing

data = readtable("ex1_data.txt");
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Figure 1. A plot of the data in the dataset ex1 data.txt.
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(a) Pick a linear regression model that you think is suitable for these data. In other words,

what K do you think is the correct one for gK(x)? In two lines, explain why you chose

the gK(x) function that you chose.

(b) To your chosen gK(x) function there is a corresponding design matrix X given by

X =


1 x1 x2

1 · · · xK1
1 x2 x2

2 · · · xK2
...

1 xn x2
n · · · xKn

 .

Please write down your X. Let β̂ = (β̂0, . . . , β̂K)t and Y = (Y1, . . . , Yn)t, with t standing

for transpose. Provide an expression for the (K + 1)× n matrix H that ensures that

β̂ = HY,

minimises h(β0, . . . , βK) =
∑n
i=1(Yi−

∑K
j=0 βjx

j
i )

2, for the gK(x) =
∑K
j=0 βjx

j you chose

in (a).

(c) Show that β̂ is unbiased.

(d) Read the data in ex1 data.txt into Matlab and estimate β using the estimator β̂ = HY .

Make a little table where you present your estimates of β̂0, . . . , β̂K , along with estimated

standard errors computed under the assumption that Var(ε1) = · · · = Var(εn).

(e) Let ĝK(x) =
∑K
j=0 β̂jx

j be the estimate of your chosen gK(x) Reproduce the plot in

Figure 1 and add the function ĝK(x) to this plot.

(f) Look closely at the spread of the points in the plot you made in (e). Might there be

something problematic with the estimated standard errors in your table? If so, what?

Exercise 2. Let X be a random variable with probability density function (pdf)

fµ(x) =
1

2µ

(
x

2

)1/µ−1

, for 0 ≤ x ≤ 2,

and fµ(x) = 0 when x is not in [0, 2], with µ > 0.

(a) Find expressions for the expectation and the variance of X.

(b) Find an expression for the cumulative distribution function (cdf) Fµ(x) =
∫ x
−∞ fµ(y) dy.

(c) Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random variables, each

with the same distribution as X. Write down an expression for the log-likelihood function

`n(µ) =
∑n
i=1 log fµ(Xi), and show that the maximum likelihood estimator for µ is

µ̂n = − 1

n

n∑
i=1

log(Xi/2),

by solving d`n(µ)/dµ = 0. You do not need to check that µ̂n is a maximiser.

(d) Define Yi = − log(Xi/2) for i = 1, . . . , n. Then Y1, . . . , Yn are i.i.d. random variables.

Show that

Pr(Y1 ≤ y) = 1− exp(−y/µ), for y > 0 (1)

Find also the expectation and the variance of Y1.

(e) Show that µ̂n is an unbiased estimator for µ, and, using results given in the course, explain

why

Pr(
√
n(µ̂n − µ)/µ ≤ x)→

∫ x

−∞

1√
2π

exp(−z2/2) dz,

as n tends to infinity, for any x ∈ (−∞,∞).
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(f) For some α ∈ (0, 1), show that[ √
nµ̂n√

n+ Φ−1(1− α/2)
,

√
nµ̂n√

n+ Φ−1(α/2)

]
,

is an approximate (1−α)× 100 percent confidence interval for µ, with Φ−1(p) the inverse

of the standard normal cdf Φ(x) =
∫ x
−∞(1/

√
2π) exp(−u2/2) du. In Matlab Φ−1(p) can be

found by norminv(p), for p ∈ [0, 1].

(g) Set µ = 2 and α = 0.05. Simulate 1000 datasets with sample size n = 53. For each dataset,

compute the confidence interval given in (f), and check if it contains µ. Count the number

of confidence intervals that contains µ. Comment on what you find. In Matlab, to simulate

independent observations from the distribution in (1), you can use the exprnd()-function.

Exercise 3. Consider the model

Yi = β0 + β1Xi + β2Zi + εi, for i = 1, . . . , n, (2)

where ε1, . . . , εn are i.i.d. N(0, 1), independent of the (Xi, Zi) which are(
Xi

Zi

)
∼ N2

((0

0

)
,

(
σ2 σρ

σρ 1

))
, for i = 1, . . . , n,

and independent. Note that this is a model where the covariates are random variables. We will

write X = (X1, . . . , Xn), and E [W | X] for the conditional expectation of some random variable

W given X = (X1, . . . , Xn). Recall that E [h(X)W | X] = h(X)E [W | X], for any real valued

function h and random variable W . In particular,

E [Yi | X] = β0 + β1Xi +
ρβ2

σ
Xi, (3)

for each i, using the fact that E [Zi | X] = (ρ/σ)Xi. You can use (3) in the following without

proving it. In this exercise you may also need that if ξ ∼ N(0, 1), then

E ξ3 = 0, and E ξ4 = 3.

The goal of this exercise is to make inference on β1, which is our parameter of interest. We will

study a situation where, for some reason, we don’t observe the Z1, . . . , Zn, and therefore try to

estimate β1 by using the least squares estimator

β̂1 =

∑n
i=1(Xi − X̄n)(Yi − Ȳn)∑n

i=1(Xi − X̄n)2
,

where X̄n = (1/n)
∑n
i=1Xi and Ȳn = (1/n)

∑n
i=1 Yi.

(a) We start by investigating the estimator β̂1 by way of simulation. Set n = 123, σ2 =

1.208, β0 = 0.432, β1 = 1.234, β2 = 2.467, and ρ = −0.567. Simulate 1000 datasets

{(X1, Y1), . . . , (Xn, Yn)} from the model in (2) with these parameter values. For each data

set, compute β̂1. Make a histogram of the 1000 estimates, and add two vertical lines to

you histogram. One vertical line indicating the mean of the simulated β̂1, and one for the

true value β1. Comment on what you find. My histogram is in Figure 2. Hint: Look at

Homework 8, Ex. 2 for how to simulate from a bivariate normal distribution.

(b) Much of what follows is easier if we express β̂1 as

β̂1 =
1∑n

j=1(Xj − X̄n)2

n∑
i=1

(Xi − X̄n)Yi.

Show that this equality is true.
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Figure 2. The histogram described in Ex. 3(a).
.

(c) Using, among other things, the linearity of conditional expectation, show that

E [β̂1 | X] = β1 +
ρβ2

σ
.

(d) Looking at the expectation in (c), under what conditions will β̂1 be unbiased for β1? And

what is the implication of this insight when it comes to which independent variables we

should, and which ones we need not, include in a regression model when we are interested

in a particular regression coefficient?

(e) Suppose that in addition to (Xi, Yi) for i = 1, . . . , n, we obtain data on the variables

W1, . . . ,Wn, and that Wi is related to Xi by

Xi = bWi + ui, for i = 1, . . . , n,

where u1, . . . , un are independent N(0, 1), with Cov(ui, Zi) = ρ for i = 1, . . . , n, while

b 6= 0. The W1, . . . ,Wn are independent N(0, 1), and are independent of the u1, . . . , un,

ε1, . . . , εn, and the Z1, . . . , Zn. Let

b̂n =

∑n
i=1WiXi∑n
i=1W

2
i

,

be the estimator minimising the function h(b) =
∑n
i=1(Xi − bWi)

2. You do not need to

show that b̂n is the minimiser of h(b), but do show that b̂n is consistent for b.

(f) Let β̃0, β̃1 be the minimisers of gfix(β0, β1) =
∑n
i=1(Yi − β0 − β1X̂i)

2, where X̂i = b̂nWi

for i = 1, . . . , n, thus, from facts derived in the course, we get

β̃1 =

∑n
i=1{X̂i − (1/n)

∑n
j=1 X̂j}(Yi − Ȳn)∑n

i=1{X̂i − (1/n)
∑n
j=1 X̂j}2

,

a fact you need not show. Show that we can write

β̃1 =
1

b̂n
(bβ1 + β1An + β2Bn + Cn),
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where

An =

∑n
i=1(Wi − W̄n)ui∑n
i=1(Wi − W̄n)2

, Bn =

∑n
i=1(Wi − W̄n)Zi∑n
i=1(Wi − W̄n)2

, Cn =

∑n
i=1(Wi − W̄n)εi∑n
i=1(Wi − W̄n)2

,

with W̄n = (1/n)
∑n
i=1Wi. It can be shown that (1/n)

∑n
i=1(Wi− W̄n)2 →p 1 as n→∞,

a fact you need not show. Show that

An
p→ 0.

as n tends to infinity.

(g) The argument you used to show that An →p 0 can be applied to Bn and Cn as well, so

indeed Bn →p 0 and Cn →p 0, but this you need not prove. Show that

β̃1
p→ β1,

as n tends to infinity. This shows that β̃1 is a consistent estimator for β1!

(h) The parameter ρ is, in real world applications, unknown. In this final exercise, let’s

compare the estimators β̂1 and β̃1 in the case when ρ is small, that is, in situations where

the bias you found in (c) might not be that pronounced. Except for ρ and b, which you

should set to ρ = −0.123 and b = 0.456, keep the parameter values from the simulations

in (a) unchanged. Simulate 1000 datasets {(X1,W1, Y1), . . . , (Xn,Wn, Yn)}, and for each

dataset compute β̂1 and β̃1 and save the values you get. Based on the 1000 simulated

values of β̂1 and the 1000 simulated values of β̃1, estimate the variances Var(β̂1), Var(β̃1),

and the squared bias of both estimators,

bias2(β̂1) = (E [β̂1]− β1)2, and bias2(β̃1) = (E [β̃1]− β1)2,

as well as the mean squared errors

mse(β̂1) = E [(β̂1 − β1)2], and mse(β̃1) = E [(β̃1 − β1)2].

Summarise your findings in a table. Comment on what you find, and explain what you

think causes this behaviour of the two estimators. The results I got from my simulations

are summarised in Table 1. If you don’t manage to do your own simulations, you can

comment on those given in that table.

variance bias2 mse

β̂1 0.0482 0.0623 0.1105

β̃1 0.2999 0.0011 0.3010

Table 1. Results of simulations as described in Ex. 3(h). The estimates of

the variance, bias2, and the mean squared error are based on 1000 simulated

datasets.


	

