PROPOSED SOLUTIONS
 HOMEWORK 1
 GRA6039 ECONOMETRICS WITH PROGRAMMING
 AUTUMN 2020

EMIL A. STOLTENBERG

The definitions, propositions, etc. that I refer to are those in the Lecture notes. If you spot mistakes in the proposed solutions, please send me an email.

Solution to Ex. 3. (d) Recall that $B \backslash A=B \cap A^{c}$. Write $B=(B \cap A) \cup(B \backslash A)=$ (make a Venn diagram!), and notice that $B \cap A$ and $B \cap A^{c}$ are disjoint. Use Def. 1.2(iii) in the Lecture notes,

$$
\operatorname{Pr}(B)=\operatorname{Pr}((B \cap A) \cup(B \backslash A))=\operatorname{Pr}(B \cap A)+\operatorname{Pr}(A \backslash B) .
$$

Subtract $\operatorname{Pr}(B \cap A)$ on both sides. (e) Write

$$
A \cup B=(A \backslash B) \cup(B \backslash A) \cup(A \cap B)
$$

and note that all three events on the right are disjoint. Use Def. 1.2(iii) and (d),

$$
\begin{aligned}
\operatorname{Pr}(A \cup B) & =\operatorname{Pr}(A \backslash B)+\operatorname{Pr}(B \backslash A)+\operatorname{Pr}(A \cap B) \\
& =\{\operatorname{Pr}(A)-\operatorname{Pr}(A \cap B)\}+\{\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)\}+\operatorname{Pr}(A \cap B) \\
& =\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B) .
\end{aligned}
$$

(f) Assume that $A \subset B$. Then $A \cap B=A$, so

$$
\operatorname{Pr}(B \backslash A)=\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)=\operatorname{Pr}(B)-\operatorname{Pr}(A)
$$

but $\operatorname{Pr}(B \backslash A) \geq 0$, so $\operatorname{Pr}(A) \leq \operatorname{Pr}(B)$.
Solutions to Ex. 4. (a) From the definition of conditional probability, multiplying both sides by $\operatorname{Pr}(B)$ we get $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)$. Here we can think of zero divided by zero as zero, so that if $\operatorname{Pr}(B)=0$ this relation is still valid. To see that this is ok, note that since $A \cap B \subset B$, so that $\operatorname{Pr}(B)=0$ entails that $\operatorname{Pr}(A \cap B)=0$ (see Ex. 3(f)). By the symmetry $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(B \cap A)$, so $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)$.
(b) The events A_{1}, \ldots, A_{k} are pairwise disjoint and their union equals the sample space Ω. Therefore (make a drawing!),

$$
B=\left(B \cap A_{1}\right) \cup\left(B \cap A_{2}\right) \cup \cdots \cup\left(B \cap A_{k-1}\right) \cup\left(B \cap A_{k}\right)=\bigcup_{i=1}^{k}\left(B \cap A_{i}\right)
$$

Since the A_{i} s are pairwise disjoint, so are the $\left(B \cap A_{i}\right)$ s, that is $\left(B \cap A_{i}\right) \cap\left(B \cap A_{j}\right)=\emptyset$, whenever $i \neq j$. Using Def. 1.2(iii) and (a) we then get

$$
\operatorname{Pr}(B)=\operatorname{Pr}\left(\bigcup_{i=1}^{k}\left(B \cap A_{i}\right)\right)=\sum_{i=1}^{k} \operatorname{Pr}\left(B \cap A_{i}\right)=\sum_{i=1}^{k} \operatorname{Pr}\left(B \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right)
$$

(c) Combining the definition of conditional probability with (a), we get Bayes theorem.

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)}
$$

(d) Combine (b) and (c).
(e) Define $R=\{$ car is red $\}$ and $W=\{$ witness says car was red $\}$. We are being told that $\operatorname{Pr}(R)=1 / 10^{3}$. The witness can say the car is red when it is (the event R), and when it is not (the event R^{c}), therefore,

$$
\begin{aligned}
\operatorname{Pr}(W) & =\operatorname{Pr}(W \mid R) \operatorname{Pr}(R)+\operatorname{Pr}\left(W \mid R^{c}\right) \operatorname{Pr}\left(R^{c}\right) \\
& =\operatorname{Pr}(W \mid R) \operatorname{Pr}(R)+\operatorname{Pr}\left(W \mid R^{c}\right)\left\{1-\operatorname{Pr}\left(R^{c}\right)\right\}
\end{aligned}
$$

We also know from the psychologist that $\operatorname{Pr}(W \mid R)=1$, and that $\operatorname{Pr}\left(W \mid R^{c}\right)=5 / 100$. Use Bayes theorem,

$$
\begin{aligned}
\operatorname{Pr}(R \mid W) & =\frac{\operatorname{Pr}(W \mid R) \operatorname{Pr}(R)}{\operatorname{Pr}(W \mid R) \operatorname{Pr}(R)+\operatorname{Pr}\left(W \mid R^{c}\right) \operatorname{Pr}\left(R^{c}\right)} \\
& =\frac{1 / 10^{3}}{1 / 10^{3}+5 / 100 \times 999 / 1000}=\frac{100}{5095} \approx 0.02
\end{aligned}
$$

Solution to Ex. 5. (a)

$$
\sum_{n=1}^{6} 2^{n}=2+2^{2}+2^{3}+2^{4}+2^{5}+2^{6}=2+4+8+16+32+64=126
$$

(b)

$$
\begin{aligned}
\sum_{k=1}^{5}(3 k-2) & =(3 \times 1-2)+(3 \times 2-2)+(3 \times 3-2)+(3 \times 4-2)+(3 \times 5-2) \\
& =1+4+7+10+13=35
\end{aligned}
$$

(c)

$$
\begin{aligned}
\sum_{n=0}^{5} 2 /(n+1) & =2 /(0+1)+2 /(1+1)+2 /(2+1)+2 /(3+1)+2 /(4+1)+2 /(5+1) \\
& =2+1+2 / 3+1 / 2+2 / 5+1 / 3=4+9 / 10=4.9
\end{aligned}
$$

(d) For the sum $\sum_{i=1}^{3}\left(\sum_{j=1}^{3} 2^{i+j}\right)$ notice that for $i=1,2,3$, the inner sum in

$$
\sum_{j=1}^{3} 2^{i+j}=2^{i+1}+2^{i+2}+2^{i+3}=2^{i}\left(2+2^{2}+2^{3}\right)=2^{i}(2+4+8)=2^{i} \times 14
$$

Therefore,

$$
\begin{array}{r}
\sum_{i=1}^{3}\left(\sum_{j=1}^{3} 2^{i+j}\right)=\sum_{i=1}^{3} 2^{i} 14=2^{1}+2^{2} 14+2^{3} 14= \\
\left(2+2^{2}+2^{3}\right) 14=(14) 14=196
\end{array}
$$

Solution to Ex. 6. To show that the equality is not true, it suffices to find one counterexample. Take $n=2$, and suppose that $X_{1}=1$ and $X_{2}=-1$. Then

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}=\frac{1}{2}(1+1)=1 \neq\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}=\left(\frac{1}{2}(1-1)\right)^{2}=0
$$

Solution to Ex. 7. (a)

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}+Y_{i}\right) & =\left(X_{1}+Y_{1}\right)+\cdots+\left(X_{n}+Y_{n}\right) \\
& =X_{1}+\cdots+X_{n}+Y_{1}+\cdots+Y_{n}=\sum_{i=1}^{n} X_{i}+\sum_{i=1}^{n} Y_{i}
\end{aligned}
$$

(b) When a is a constant,

$$
\sum_{i=1}^{n} a X_{i}=a X_{1}+\cdots+a X_{n}=a\left(X_{1}+\cdots+X_{n}\right)=a \sum_{i=1}^{n} X_{i}
$$

(c) In (a), set $Y_{i}=a$ for $i=1, \ldots, n$, then that exercise tells us that

$$
\sum_{i=1}^{n}\left(X_{i}+a\right)=\sum_{i=1}^{n} X_{i}+\sum_{i=1}^{n} a=\sum_{i=1}^{n} X_{i}+n a
$$

(d) In (b) set $a=1 / b$ for $b \neq 0$, then $\sum_{i=1}^{n} X_{i} / b=(1 / b) \sum_{i=1}^{n} X_{i}$.

Solution to Ex. 8. (a) Combining Ex. 7(a) and (b), we get

$$
\sum_{i=1}^{n}\left(a X_{i}+b Y_{i}\right) \stackrel{\text { Ex. } 7(\mathrm{a})}{=} \sum_{i=1}^{n} a X_{i}+\sum_{i=1}^{n} b Y_{i} \stackrel{\text { Ex. 7(b) }}{=} a \sum_{i=1}^{n} X_{i}+b \sum_{i=1}^{n} Y_{i}
$$

(b) $A_{i}=a X_{i}$ for $i=1, \ldots, n$, and $\bar{A}_{n}=(1 / n) \sum_{i=1}^{n} A_{i}$. Then

$$
\bar{A}_{n}=\frac{1}{n} \sum_{i=1}^{n} A_{i}=\frac{1}{n} \sum_{i=1}^{n} a X_{i} \stackrel{\text { Ex. }}{=}{ }^{7(\mathrm{~b})} \frac{a}{n} \sum_{i=1}^{n} X_{i}=a \bar{X}_{n}
$$

where $\bar{X}_{n}=(1 / n) \sum_{i=1}^{n} X_{i}$.
(c) $B_{i}=X_{i}+Y_{i}$ for $i=1, \ldots, n$. Then

$$
\bar{B}_{n}=\frac{1}{n} \sum_{i=1}^{n} B_{i}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}+Y_{i}\right) \stackrel{\text { Ex. } 7(\text { a) }}{=} \frac{1}{n} \sum_{i=1}^{n} X_{i}+\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\bar{X}_{n}+\bar{Y}_{n}
$$

where $\bar{X}_{n}=(1 / n) \sum_{i=1}^{n} X_{i}$ and $\bar{Y}_{n}=(1 / n) \sum_{i=1}^{n} Y_{i}$.
(d) $C_{i}=a X_{i}+b Y_{i}$ for $i=1, \ldots, n$. Then

$$
\bar{C}_{n}=\frac{1}{n} \sum_{i=1}^{n} C_{i}=\frac{1}{n} \sum_{i=1}^{n}\left(a X_{i}+b Y_{i}\right) \stackrel{\text { Ex. } 8(\mathrm{aa})}{=} \frac{a}{n} \sum_{i=1}^{n} X_{i}+\frac{b}{n} \sum_{i=1}^{n} Y_{i}=a \bar{X}_{n}+b \bar{Y}_{n} .
$$

Solution to Ex. 9. (a) Let X_{1}, \ldots, X_{n} be numbers, obs., rv's.
(a) We define $\widetilde{X}_{i}=X_{i}-\bar{X}_{n}$ for $i=1, \ldots, n$, where $\bar{X}_{n}=(1 / n) \sum_{i=1}^{n} X_{i}$ as always. The average of $\widetilde{X}_{1}, \ldots, \widetilde{X}_{n}$ is

$$
\frac{1}{n} \sum_{i=1}^{n} \widetilde{X}_{i}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) \stackrel{\text { Ex. } 7(\mathrm{c})}{=} \frac{1}{n} \sum_{i=1}^{n} X_{i}-\frac{n}{n} \bar{X}_{n}=\bar{X}_{n}-\bar{X}_{n}=0 .
$$

(b) Now set

$$
\widetilde{X}_{i}=\frac{X_{i}-\bar{X}_{n}}{s_{X}}, \quad \text { for } i=1, \ldots, n,
$$

where $s_{X}=\sqrt{s_{X}^{2}}$, and

$$
s_{X}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2},
$$

is the empirical variance. The empirical average of $\widetilde{X}_{1}, \ldots, \widetilde{X}_{n}$ is zero:

$$
\frac{1}{n} \sum_{i=1}^{n} \widetilde{X}_{i}=\frac{1}{n} \sum_{i=1}^{n} \frac{X_{i}-\bar{X}_{n}}{s_{X}} \stackrel{\text { Ex. } 7 \text { (d) }}{=} \frac{1}{s_{X}} \frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) \stackrel{\text { Ex. 9(a) }}{=} 0,
$$

because $1 / s_{X}$ is a constant.
The empirical variance $s_{\widetilde{X}}^{2}$ of $\widetilde{X}_{1}, \ldots, \widetilde{X}_{n}$ is one:

$$
\begin{aligned}
s_{\widetilde{X}}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(\widetilde{X}_{i}-\frac{1}{n} \sum_{i=1}^{n} \widetilde{X}_{i}\right)^{2}=\frac{1}{n-1} \sum_{i=1}^{n} \widetilde{X}_{i}^{2} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}_{n}}{s_{X}}\right)^{2}=\frac{1}{s_{X}^{2}} \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}=\frac{s_{X}^{2}}{s_{X}^{2}}=1,
\end{aligned}
$$

so the empirical standard deviation $s_{\tilde{X}}=\sqrt{s_{\widetilde{X}}^{2}}$ must also be one.
(c) Now set $\widetilde{X}_{i}=a X_{i}+b$ for $i=1, \ldots, n$. Then the empirical average of $\widetilde{X}_{1}, \ldots, \widetilde{X}_{n}$ is

$$
\frac{1}{n} \sum_{i=1}^{n} \widetilde{X}_{i}=\frac{1}{n} \sum_{i=1}^{n}\left(a X_{i}+b\right) \stackrel{\mathrm{Ex} .7(\mathrm{c})}{=} \frac{a}{n} \sum_{i=1}^{n} X_{i}+b=a \bar{X}_{n}+b .
$$

And

$$
\begin{aligned}
s_{\tilde{X}}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left\{a X_{i}+b-\left(a \bar{X}_{n}+b\right)\right\}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(a X_{i}-a \bar{X}_{n}\right)^{2} \\
& \stackrel{\text { Ex. } 7(\text { b) }}{=} \frac{a^{2}}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}=a^{2} s_{X}^{2} .
\end{aligned}
$$

The result in (a) is the special case where $a=1$ and $b=-\bar{X}_{n}$. The result in (b) is the special case where $a=1 / s_{X}$ and $b=-\bar{X}_{n} / s_{X}$.

Solution to Ex. 10. We have numbers, observations, rv's X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n}. The empirical covariance is defined as

$$
s_{X, Y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)
$$

(a)

$$
\begin{aligned}
& s_{X, Y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)=\frac{1}{n-1} \sum_{i=1}^{n}\left\{\left(X_{i}-\bar{X}_{n}\right) Y_{i}-\left(X_{i}-\bar{X}_{n}\right) \bar{Y}_{n}\right\} \\
& \quad \stackrel{\text { Ex. } 7(\mathrm{a})}{=} \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) Y_{i}-\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) \bar{Y}_{n} \\
& \quad \stackrel{\text { Ex. } 7(\mathrm{~b})}{=} \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) Y_{i}-\frac{\bar{Y}_{n}}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) Y_{i}
\end{aligned}
$$

because $\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)=0$ as shown in Ex. 9(a). By the same argument we see that $s_{X, Y}=(1 /(n-1)) \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right) X_{i}$.
(b) From (a) and using that $s_{X, X}=s_{X}^{2}$, we get

$$
\begin{aligned}
s_{X}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) X_{i}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}^{2}-\bar{X}_{n} X_{i}\right) \\
\quad \text { Ex. }_{=}^{=}(\mathrm{a}) & \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n-1} \sum_{i=1}^{n} \bar{X}_{n} X_{i} \stackrel{\text { Ex. } 7(\mathrm{~b})}{=} \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}_{n} \frac{1}{n-1} \sum_{i=1}^{n} X_{i} \\
& =\frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2}-\frac{n}{n-1} \bar{X}_{n}^{2}
\end{aligned}
$$

for the last equality using that since

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \text { we have } \quad n \bar{X}_{n}=\sum_{i=1}^{n} X_{i}
$$

Solution to Ex. 11. For $a<b$, define $A=\{X \leq a\}$ and $B=\{a<X \leq b\}$. (a) Then $A \cap B=\emptyset$, so they are disjoint, and (b) $A \cup B=\{X \leq b\}$. (c). Use Def. 1.2(iii)

$$
\operatorname{Pr}(X \leq b)=\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)=\operatorname{Pr}(X \leq a)+\operatorname{Pr}(a<X \leq b)
$$

and subtract $\operatorname{Pr}(X \leq a)$ on both sides to get $\operatorname{Pr}(a<X \leq b)=\operatorname{Pr}(X \leq b)-\operatorname{Pr}(X \leq a)$.
You could also argue like this: When $a<b$,

$$
\{a<X \leq b\}=\{X \leq b\} \backslash\{X \leq a\}=\{X \leq b\} \cap\{X>a\}^{c}
$$

and $\{X \leq b\} \cap\{X \leq a\}=\{X \leq a\}$, so by Ex. 3(d),

$$
\operatorname{Pr}(a<X \leq b)=\operatorname{Pr}(\{X \leq b\} \backslash\{X \leq a\})=\operatorname{Pr}(X \leq b)-\operatorname{Pr}(X \leq a)
$$

