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EMIL A. STOLTENBERG

Solution to Ex. 1. (a) The rv X takes its values in X = {0,1}, with distribution
Pr(X =1) = p. The expectation of X is

1 1
EX =) af(x)=)Y af(z)=) ap"(1-p) " =0x(1—p)+1xp=p.
=0

zeX =0
(b) The variance of X is

1
Var(X) =B [(X —p)’] =) (z—p)*p"(1—p)' "
2=0
=(0-p)’(1-p)+ (1 -p’p=p"(1-p)+ (1 -p)°p
=p(l=p){p+ (1 -p)}=p-p)
(c) We have the function g(x) = 2z — 1. With X a rv, then g(X) is a rv. Its expectation

18
1

Eg(X)=> g@)f(x)=> Qu-1)p"(1-p) "=-(1-p)+p=2p-1,
zeX =0
so when p = 1/2, the expectation is E g(X) = 0. The variance of g(X) is
Varg(X) = E[{2X — 1 - (2p— 1)}2] = E[{2X - 2p}?] = E[{2(X — p)}?]
1 1
=> Az —p’p"(1-p) =4 (x-p)p"(1-p""
z=0 =0
= 4 Var (X) = 4p(1 — p),
so when p = 1/2, then Varg(X) = 1. We could also do this exercise in a more ‘direct’
manner using the properties of expectation and variance that we are soon to derive in
Ex. 3.
Ejg(X)]=E2X -1]=2E[X]-1=2p—1,

and
Var g(X) = Var (2X — 1) = 4Var (X) = 4p(1 — p).
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Solution to Ex. 2. We are given the function f(z) = 02! for > 0, and zero elsewhere,
with @ > 0 a parameter. (a) To check that f(x) is a pdf we need to verify that f(z) > 0
for all z, and that ffooo f(z)dz = 1. The function 829~ > 0 for all > 0 since § > 0,
hence f(x) > 0 for all .

/ f(x /ea:“dx—

1
2 =17 -0’ = 1.

0
(b) We see that
0, x <0, 0, x<0,
/ fly)dy = fey‘“dy, 0<ao<l, =4 2% 0<z<l,
1, z>1, 1, z>1.

Often, we will just write F(z) = 2for0<z< 1, with the tacit understanding that since
F(z)isacdf, F(z) =0 for z <0 and F(z) =1 for z > 1.
(c) X ~ F means that the rv X has the distribution specified by F'.

Pr(X >1/2)=1-Pr(X <1/2)=1-F(1/2) =1 - (1/2)°.
(d) When X ~ F,

1 1
EX = / 2021 dx = / 020 do =
0 0

Let’s first find the variance the ‘hard way’

1 1
Var (X) = /0 (x — E[X])?02% 1 dz = /0 {2% — 22E [X] + (E[X])?}027 1 da

1
:/ 22021 dz — 2B [X ]/:EO:B@ Ldz + (B / 001 dz
0

- /1 0297 dz — 2(E[X])? + (E[X])?
0

1
0 or1_ 0
W o+1

Moo o 0 0
g0 +2 6+2 (O+1)2 (0+2)(0+1)2

The ‘easy’ is to use what we are to show in Ex. 3 (and basically showed just above),

22— (B (X)) =

namely that
Var (X) = E[X?] — (E[X])%,
then use that E [X] = 8/(6 + 1) and compute E [X?] = [ 2262 dz = /(0 + 2).

When doing possibly confusing integrals and algebra it is a nice habit to check that
what you have done is ‘probably’ correct by way of simulation. Here is a Matlab script
where I, for some value of > 0 that I choose, check the expressions for E [X] and Var (X)
that we just found.
theta = 1.23;

u = rand(100,1); % random uniform rv’s on [0,1]
u.”(1/theta); % probability integral transform

X

mean(x); EX = theta/(theta + 1);
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var(x); VarX = theta/((theta + 2)*(theta + 1)°2);

fprintf ("%f should be close to %f\n", [mean(x),EX])
fprintf ("%f should be close to %f\n", [var(x),VarX])

Solution to Ex. 3. Proposition 2.3 in the Lecture notes says that the expectation is
linear, that is, for rv’s X and Y and constants a,b and ¢,

ElaX +bY +¢]=aE[X]|+bE[Y] +¢

For what follows, you must remember that E [X] and E [Y] are constants, just like a, b and
c above, that is, the expectations are not rv’s. We’ll use Proposition 2.3 over and over in
what follows. (a)

Var (X) = E[(X - E[X])’] = E[X® — 2 XE[X] + (B[X])?]

=B[X?] - 2B [X]E[X] + (B[X])* = E[X?] — (E[X])*.
(b) For a constant a

Var (aX) = E[(aX — E[aX])?] = E[(aX — aB[X])?]

= E[a*(X - B[X])?] = *E[(X — E[X])?] = a*Var (X).
(c) For a constant a
Var(a+ X) =E[(a+ X —Ela+ X))} =E[(a + X —a — E[X))?]
—B[(X — E[X])?] = Var (X),

(d)

Cov(X,Y)=E{(X —E[X]))(Y —E[Y])} = E{XY — XE[Y] - YE[X] + E[X]E[Y]}
=E[XY]-EX]E[Y]-E[Y]E[X]+ E[X]E[Y]
=E[XY]-E[X]E[Y].

(e) If X and Y are independent, then E[XY] = E[X]E[Y], and we get
Cov(X,Y)=E[XY]-E[X]E[Y] =E[X]E[Y] - E[X]E[Y] = 0.
(e)
Var (aX +bY) = E[(aX 4+ bY)?] — (E[aX + bY])?

= E[a’X% + b’Y? 4 2abXY] — (aE[X] + bE [Y])?
= a’E [X?] + V’E [Y?] + 20bE [XY] — ¢*(E[X])? — b*(E[Y])? — 2abE [X]E [Y]
= *{E[X?] - (E[X])*} + 0 {E[Y?] - (E[Y])*} + 22b{E[XY] - E[X]E[Y]}
= a? Var (X) 4 b? Var(Y) + 2ab Cov(X,Y).

Importantly, when X and Y are independent,
Var (aX 4 bY) = a*Var (X) + b*Var (V).
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Solution to Ex. 4. X;,..., X, are i.i.d. rv’s with expectation p and variance o2. As
usual, X, = (1/n) >, X;. In this exercise we also use Prop. 2.3 from the Lecture
notes, and in particular that Var (aX + bY) = a?Var (X) + b*Var (V') when X and Y are
independent, as we established in Ex. 3(e). (a)

_ 1< 1< 1« n
X =B X)= D EX]= 3 u=u=p
=1 =1 =1

(b)

_ 1 & 1 — Il &y, n o o2
Var (X,,) = Var (EZXZ) = EZV&I"(XZ-) = EZU =30 =—.
=1 =1 =1
Notice that here the independence of Xy, ..., X,, is very important, for we actively use

the independence assumption to get the second equality.
(c) Because the variance of the empirical mean, namely o?/n becomes smaller and
smaller as we increase the sample size n.

Solution to Ex. 5. The rv X has the exponential distribution, that is, its pdf is f(x) =
0 exp(—0x) for x > 0 and f(x) = 0 for < 0, where 6 > 0 is some parameter. We will
often write X ~ Expo(6).

(a) Clearly, f(x) > 0 for all z. Moreover,

/ O exp(—0x)der = —
0

(b) For 2 <0, [*__ f(y)dy = 0, while for z > 0,

exp(—f0z) = -0+1=1.

oo
0

F(x) = /Om Oexp(—0y)dy = —| exp(—f0y) = —exp(—0z) +1 =1 — exp(—0z).

x
0
(c) Use integration by parts

o0

EX :/ 0 exp(—fz)dx = —
0

x exp(—6z) +/ e % dx
0

0
o 1] 1 1
=0 e =—2| e =—2(0-1)=-.
—i—/o e x il e 0( ) 7
where we use ’Hopital’s rule to show that,
. . T ) 1
Jm wexp(=0r) = Im s = g ~
Similarly,
0 o 00
EX?= / 220 exp(—0z)dz = —| 22 exp(—0z) + 2xe % dz
0 0 0

x 2 o
=0+ / 2z % dy = 2 / 20 9% dy =
0 0 0

because lim, o, 22 exp(—60z) = 0. Using Ex. 3(a),

Var (X) = B[X?] = (B[X])* = 5 = 55 = o5
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(d) Define the rv Z by

g {1 if X >1og(2)/0,
0, if X >log(2)/6.

Notice that Z is a Bernoulli random variable (‘a coin flip’) like the random variable we
met in Ex. 1. This means that if we can find the success probability Pr(Z = 1), we can
can use Ex. 1 to find E Z and Var Z.

Pr(Z =1) =Pr(X >1log(2)/0) =1 —Pr(X <log(2)/0) =1 — F(log(2)/0)
=1 —[1 - exp{—6(log(2)/0)}] = exp{—0(log(2)/6)}

= exp(~ log(2)) = exp(loa(1/2)) = 5.

Which shows that Z is Bernoulli with success probability 1/2, so from Ex. 1 we get

1 1 1 1
EZ:§, and VarZzi(l—i):Z

Solution to Ex. 6. Let Z; and Z5 be independent standard normal random variables.
Set

X =o0oxZ1+px
Y =oy(pZ1 + V1 —p?Z3) + py,

where ox, 0y > 0, the correlation coefficient p € (—1,1), and ux and uy are real numbers.
Since Z; and Z, are independent independent standard normal random variables,

EZ;=0, Var(Z;)=E[Z]]=1, forj=1.2,

and E [Z1Z2] =E [Zl]E [ZQ] =0.
(a) Use Proposition 2.3 from the Lecture notes

E[X]|=E[oxZ1 + pux] = oxE|[Z1] + px = px,
and
E[Y] =E(oy(pZ1 + V1 - p2 Z2) + py] = oy pE[Z1] + oy /1 = p2E[Zs] + py = py-

(b) In this exercise and in (c) the independence of Z; and Zs is important, and we’ll use
that Var(aZ,+bZs) = a?*Var(Z;)+b*Var(Z2) = a®+b?%, and that E [Z, 23] = E[Z1]E [ 2] =
0.

Var (X) = Var (0xZ1 + pux) = 0% Var(Z;) = 0%,

and

Var (Y) = Var (oy (pZ1 + /1 — p? Z3) + py)
= oy p*Var(Z1) + ot (1 — p*)Var(Z2) = oy p* + 03 (1 — p°) = 0¥
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Cov (X,Y) =E [O’le(Uy(pzl +1-— p2 ZQ))]
=oxoypE [212] +oxoyyv1— p2 E [Z1Z2]
= pPpOoXxX0Oy +oxoy 1-— p2E [Zl]E [ZQ] = pPOX0OYy.

We say that (X,Y) has the bivariate normal distribution with expectation vector
2
0%  poxoy
pPOXTy 052/ ’

X MX) < ok PUXGY)
~N , .
<Y) 2( <,UY poxoy 0% )

The parameter —1 < p < 1 is the correlation,
Cov(X,Y)

V/Var(X)Var(Y)

The probability density function of the bivariate normal distribution is

fzy) = : 5

2roxoy\/1—p

1 (z —px)* | (y—py)? (. — px)(z — py)
xexp{ - 2(1 - p?) ( o% + ol —2 ox0oy )}

(ux, pny), and covariance matrix

and write

Solution to Ex. 7. Xq,..., X, are i.i.d. random variables with the uniform distribution
on [0,0]. The pdf of this distribution is f(x) = 1/6 for x € [0,6], and f(x) = 0 for =
outside of [0, 6].

(a) The cdf of one uniform rv is

1
F(z) :/ —dz = E, for = € [0, 6],
o 0 6

and F(z) =0 for z <0 and F(z) =1 for z > 6.

(b) We have the random variable M,, defined to be the largest of the X7,..., Xy,

M,, = max X; = max{Xy,..., X, }.
i<n

Now, we want to find the cdf of M,,. Note that if M,, < x then all the X;s must be smaller
than z, so these two events are the same
{M,, <z} ={X; <z for all i}.
Therefore,
Pr(M, <z)=Pr(X; <z forall i) =Pr(X; <uz...,X, <z
=Pr(X; <z)---Pr(X, <z)=F(x)---F(z) = F(z)",

where we in the third equality use that Xi,..., X, are independent, and in the fourth
equality that they are identically distributed.
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Notes on Ex. 8 and Ex. 9. You have to play around in Matlab to learn it. Remember
to always save your scripts in an .m-file! Some of the point of Ex. 9 is to see how the
empirical mean X,, = (1/n)Y." ; X; of an i.i.d. sample X,..., X, centers around the
expectation, say p = E[X;] =--- = E[X,].

Here is a Matlab script that makes a little ‘movie’ where we see this. Be careful with
copy-pasting Matlab code from .pdf’s, it often leads to strange errors (due to ‘invisible’
symbols). Rather write the code into an .m-file yourself.

n_max = 600;

mu = 1.23;

sigma = 3.21;

x = normrnd(mu,sigma,100,1);
sims = 400;

for n= 1:n_max
x_bar = zeros(1l,sims);
for i = 1:sims
x = normrnd(mu,sigma,n,1);
x_bar(i) = mean(x);

end
histogram(x_bar,"Normalization","pdf")
x1im([mu-2.8,mu+2.8]) ;ylim([0,4]);
line([mu, mul], [0,4], ’LineWidth’, 3, ’Color’, ’g’);
pause (0.035)

end
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