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Solution to Ex. 1. (a) The rv X takes its values in X = {0, 1}, with distribution

Pr(X = 1) = p. The expectation of X is

EX =
∑
x∈X

xf(x) =

1∑
x=0

xf(x) =

1∑
x=0

xpx(1− p)1−x = 0× (1− p) + 1× p = p.

(b) The variance of X is

Var(X) = E [(X − p)2] =
1∑

x=0

(x− p)2px(1− p)1−x

= (0− p)2(1− p) + (1− p)2p = p2(1− p) + (1− p)2p
= p(1− p){p+ (1− p)} = p(1− p).

(c) We have the function g(x) = 2x− 1. With X a rv, then g(X) is a rv. Its expectation

is

E g(X) =
∑
x∈X

g(x)f(x) =
1∑

x=0

(2x− 1)px(1− p)1−x = −(1− p) + p = 2p− 1,

so when p = 1/2, the expectation is E g(X) = 0. The variance of g(X) is

Var g(X) = E [{2X − 1− (2p− 1)}2] = E [{2X − 2p}2] = E [{2(X − p)}2]

=
1∑

x=0

4(x− p)2px(1− p)1−x = 4
1∑

x=0

(x− p)2px(1− p)1−x

= 4 Var (X) = 4p(1− p),

so when p = 1/2, then Var g(X) = 1. We could also do this exercise in a more ‘direct’

manner using the properties of expectation and variance that we are soon to derive in

Ex. 3.

E [g(X)] = E [2X − 1] = 2E [X]− 1 = 2p− 1,

and

Var g(X) = Var (2X − 1) = 4Var (X) = 4p(1− p).
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Solution to Ex. 2. We are given the function f(x) = θxθ−1 for x ≥ 0, and zero elsewhere,

with θ > 0 a parameter. (a) To check that f(x) is a pdf we need to verify that f(x) ≥ 0

for all x, and that
∫∞
−∞ f(x) dx = 1. The function θxθ−1 ≥ 0 for all x ≥ 0 since θ > 0,

hence f(x) ≥ 0 for all x.∫ ∞
−∞

f(x) dx =

∫ 1

0
θxθ−1 dx =

∣∣∣∣1
0

xθ = 1θ − 0θ = 1.

(b) We see that

F (x) =

∫ x

−∞
f(y) dy =


0, x < 0,∫ x
0 θy

θ−1 dy, 0 ≤ x ≤ 1,

1, x ≥ 1,

=


0, x < 0,

xθ, 0 ≤ x ≤ 1,

1, x ≥ 1.

Often, we will just write F (x) = xθ for 0 ≤ x ≤ 1, with the tacit understanding that since

F (x) is a cdf, F (x) = 0 for x < 0 and F (x) = 1 for x ≥ 1.

(c) X ∼ F means that the rv X has the distribution specified by F .

Pr(X > 1/2) = 1− Pr(X ≤ 1/2) = 1− F (1/2) = 1− (1/2)θ.

(d) When X ∼ F ,

EX =

∫ 1

0
xθxθ−1 dx =

∫ 1

0
θxθ dx =

∣∣∣∣1
0

θ

θ + 1
xθ+1 =

θ

θ + 1
.

Let’s first find the variance the ‘hard way’

Var (X) =

∫ 1

0
(x− E [X])2θxθ−1 dx =

∫ 1

0
{x2 − 2xE [X] + (E [X])2}θxθ−1 dx

=

∫ 1

0
x2θxθ−1 dx− 2E [X]

∫
xθxθ−1 dx+ (E [X])2

∫ 1

0
θxθ−1 dx

=

∫ 1

0
θxθ+1 dx− 2(E [X])2 + (E [X])2

=

∣∣∣∣1
0

θ

θ + 2
xθ+2 − (E [X])2 =

θ

θ + 2
− θ2

(θ + 1)2
=

θ

(θ + 2)(θ + 1)2
.

The ‘easy’ is to use what we are to show in Ex. 3 (and basically showed just above),

namely that

Var (X) = E [X2]− (E [X])2,

then use that E [X] = θ/(θ + 1) and compute E [X2] =
∫ 1
0 x

2θxθ−1 dx = θ/(θ + 2).

When doing possibly confusing integrals and algebra it is a nice habit to check that

what you have done is ‘probably’ correct by way of simulation. Here is a Matlab script

where I, for some value of θ > 0 that I choose, check the expressions for E [X] and Var (X)

that we just found.

theta = 1.23;

u = rand(100,1); % random uniform rv’s on [0,1]

x = u.^(1/theta); % probability integral transform

mean(x); EX = theta/(theta + 1);
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var(x); VarX = theta/((theta + 2)*(theta + 1)^2);

fprintf("%f should be close to %f\n",[mean(x),EX])

fprintf("%f should be close to %f\n",[var(x),VarX])

Solution to Ex. 3. Proposition 2.3 in the Lecture notes says that the expectation is

linear, that is, for rv’s X and Y and constants a, b and c,

E [aX + bY + c] = aE [X] + bE [Y ] + c.

For what follows, you must remember that E [X] and E [Y ] are constants, just like a, b and

c above, that is, the expectations are not rv’s. We’ll use Proposition 2.3 over and over in

what follows. (a)

Var (X) = E [(X − E [X])2] = E [X2 − 2XE [X] + (E [X])2]

= E [X2]− 2 E [X]E [X] + (E [X])2 = E [X2]− (E [X])2.

(b) For a constant a

Var (aX) = E [(aX − E[aX])2] = E [(aX − aE[X])2]

= E [a2(X − E[X])2] = a2E [(X − E [X])2] = a2Var (X).

(c) For a constant a

Var (a+X) = E [(a+X − E[a+X])2] = E [(a+X − a− E[X])2]

= E [(X − E[X])2] = Var (X),

(d)

Cov (X,Y ) = E {(X − E [X])(Y − E [Y ])} = E {XY −XE [Y ]− Y E [X] + E [X]E [Y ]}
= E [XY ]− E [X]E [Y ]− E [Y ]E [X] + E [X]E [Y ]

= E [XY ]− E [X]E [Y ].

(e) If X and Y are independent, then E [XY ] = E [X]E [Y ], and we get

Cov (X,Y ) = E [XY ]− E [X]E [Y ] = E [X]E [Y ]− E [X]E [Y ] = 0.

(e)

Var (aX + bY ) = E [(aX + bY )2]− (E [aX + bY ])2

= E [a2X2 + b2Y 2 + 2abXY ]− (aE [X] + bE [Y ])2

= a2E [X2] + b2E [Y 2] + 2abE [XY ]− a2(E [X])2 − b2(E [Y ])2 − 2abE [X]E [Y ]

= a2{E [X2]− (E [X])2}+ b2{E [Y 2]− (E [Y ])2}+ 2ab{E [XY ]− E [X]E [Y ]}

= a2 Var (X) + b2 Var(Y ) + 2abCov(X,Y ).

Importantly, when X and Y are independent,

Var (aX + bY ) = a2Var (X) + b2Var (Y ).
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Solution to Ex. 4. X1, . . . , Xn are i.i.d. rv’s with expectation µ and variance σ2. As

usual, X̄n = (1/n)
∑n

i=1Xi. In this exercise we also use Prop. 2.3 from the Lecture

notes, and in particular that Var (aX + bY ) = a2Var (X) + b2Var (Y ) when X and Y are

independent, as we established in Ex. 3(e). (a)

E [X̄n] = E
( 1

n

n∑
i=1

Xi) =
1

n

n∑
i=1

E [Xi] =
1

n

n∑
i=1

µ =
n

n
µ = µ.

(b)

Var (X̄n) = Var
( 1

n

n∑
i=1

Xi) =
1

n2

n∑
i=1

Var (Xi) =
1

n2

n∑
i=1

σ2 =
n

n2
σ2 =

σ2

n
.

Notice that here the independence of X1, . . . , Xn is very important, for we actively use

the independence assumption to get the second equality.

(c) Because the variance of the empirical mean, namely σ2/n becomes smaller and

smaller as we increase the sample size n.

Solution to Ex. 5. The rv X has the exponential distribution, that is, its pdf is f(x) =

θ exp(−θx) for x ≥ 0 and f(x) = 0 for x < 0, where θ > 0 is some parameter. We will

often write X ∼ Expo(θ).

(a) Clearly, f(x) ≥ 0 for all x. Moreover,∫ ∞
0

θ exp(−θx) dx = −
∣∣∣∣∞
0

exp(−θx) = −0 + 1 = 1.

(b) For x < 0,
∫ x
−∞ f(y) dy = 0, while for x > 0,

F (x) =

∫ x

0
θ exp(−θy) dy = −

∣∣∣∣x
0

exp(−θy) = − exp(−θx) + 1 = 1− exp(−θx).

(c) Use integration by parts

EX =

∫ ∞
0

xθ exp(−θx) dx = −
∣∣∣∣∞
0

x exp(−θx) +

∫ ∞
0

e−θx dx

= 0 +

∫ ∞
0

e−θx dx = −1

θ

∣∣∣∣∞
0

e−θx = −1

θ
(0− 1) =

1

θ
.

where we use l’Hôpital’s rule to show that,

lim
x→∞

x exp(−θx) = lim
x→∞

x

exp(θx)
= lim

x→∞

1

θ exp(x)
= 0.

Similarly,

EX2 =

∫ ∞
0

x2θ exp(−θx) dx = −
∣∣∣∣∞
0

x2 exp(−θx) +

∫ ∞
0

2xe−θx dx

= 0 +

∫ ∞
0

2xe−θx dx =
2

θ

∫ ∞
0

xθe−θx dx =
2

θ
E [X] =

2

θ2
.

because limx→∞ x
2 exp(−θx) = 0. Using Ex. 3(a),

Var (X) = E [X2]− (E [X])2 =
2

θ2
− 1

θ2
=

1

θ2
.
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(d) Define the rv Z by

Z =

{
1, if X ≥ log(2)/θ,

0, if X ≥ log(2)/θ.

Notice that Z is a Bernoulli random variable (‘a coin flip’) like the random variable we

met in Ex. 1. This means that if we can find the success probability Pr(Z = 1), we can

can use Ex. 1 to find EZ and VarZ.

Pr(Z = 1) = Pr(X ≥ log(2)/θ) = 1− Pr(X ≤ log(2)/θ) = 1− F (log(2)/θ)

= 1− [1− exp{−θ(log(2)/θ)}] = exp{−θ(log(2)/θ)}

= exp(− log(2)) = exp(log(1/2)) =
1

2
.

Which shows that Z is Bernoulli with success probability 1/2, so from Ex. 1 we get

EZ =
1

2
, and VarZ =

1

2

(
1− 1

2

)
=

1

4
.

Solution to Ex. 6. Let Z1 and Z2 be independent standard normal random variables.

Set

X = σXZ1 + µX

Y = σY (ρZ1 +
√

1− ρ2 Z2) + µY ,

where σX , σY > 0, the correlation coefficient ρ ∈ (−1, 1), and µX and µY are real numbers.

Since Z1 and Z2 are independent independent standard normal random variables,

EZj = 0, Var (Zj) = E [Z2
j ] = 1, for j =1,2,

and E [Z1Z2] = E [Z1]E [Z2] = 0.

(a) Use Proposition 2.3 from the Lecture notes

E [X] = E [σXZ1 + µX ] = σXE [Z1] + µX = µX ,

and

E [Y ] = E [σY (ρZ1 +
√

1− ρ2 Z2) + µY ] = σY ρE [Z1] + σY
√

1− ρ2 E [Z2] + µY = µY .

(b) In this exercise and in (c) the independence of Z1 and Z2 is important, and we’ll use

that Var(aZ1+bZ2) = a2Var(Z1)+b2Var(Z2) = a2+b2, and that E [Z1Z2] = E [Z1]E [Z2] =

0.

Var (X) = Var (σXZ1 + µX) = σ2XVar(Z1) = σ2X ,

and

Var (Y ) = Var (σY (ρZ1 +
√

1− ρ2 Z2) + µY )

= σ2Y ρ
2Var(Z1) + σ2Y (1− ρ2)Var(Z2) = σ2Y ρ

2 + σ2Y (1− ρ2) = σ2Y .
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(c)

Cov (X,Y ) = E [σXZ1(σY (ρZ1 +
√

1− ρ2 Z2))]

= σXσY ρE [Z2
1 ] + σXσY

√
1− ρ2 E [Z1Z2]

= ρσXσY + σXσY
√

1− ρ2 E [Z1]E [Z2] = ρσXσY .

We say that (X,Y ) has the bivariate normal distribution with expectation vector

(µX , µY ), and covariance matrix (
σ2X ρσXσY

ρσXσY σ2Y

)
,

and write (
X

Y

)
∼ N2

((µX
µY

)
,

(
σ2X ρσXσY

ρσXσY σ2Y

))
.

The parameter −1 ≤ ρ ≤ 1 is the correlation,

ρ =
Cov(X,Y )√

Var(X)Var(Y )
.

The probability density function of the bivariate normal distribution is

f(x, y) =
1

2πσXσY
√

1− ρ2

× exp
{
− 1

2(1− ρ2)
((x− µX)2

σ2X
+

(y − µY )2

σ2Y
− 2ρ

(x− µX)(x− µY )

σXσY

)}
.

Solution to Ex. 7. X1, . . . , Xn are i.i.d. random variables with the uniform distribution

on [0, θ]. The pdf of this distribution is f(x) = 1/θ for x ∈ [0, θ], and f(x) = 0 for x

outside of [0, θ].

(a) The cdf of one uniform rv is

F (x) =

∫ x

0

1

θ
dx =

x

θ
, for x ∈ [0, θ],

and F (x) = 0 for x < 0 and F (x) = 1 for x ≥ θ.
(b) We have the random variable Mn defined to be the largest of the X1, . . . , Xn,

Mn = max
i≤n

Xi = max{X1, . . . , Xn}.

Now, we want to find the cdf of Mn. Note that if Mn ≤ x then all the Xis must be smaller

than x, so these two events are the same

{Mn ≤ x} = {Xi ≤ x for all i}.

Therefore,

Pr(Mn ≤ x) = Pr(Xi ≤ x for all i) = Pr(X1 ≤ x, . . . ,Xn ≤ x)

= Pr(X1 ≤ x) · · ·Pr(Xn ≤ x) = F (x) · · ·F (x) = F (x)n,

where we in the third equality use that X1, . . . , Xn are independent, and in the fourth

equality that they are identically distributed.
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Notes on Ex. 8 and Ex. 9. You have to play around in Matlab to learn it. Remember

to always save your scripts in an .m-file! Some of the point of Ex. 9 is to see how the

empirical mean X̄n = (1/n)
∑n

i=1Xi of an i.i.d. sample X1, . . . , Xn centers around the

expectation, say µ = E [X1] = · · · = E [Xn].

Here is a Matlab script that makes a little ‘movie’ where we see this. Be careful with

copy-pasting Matlab code from .pdf’s, it often leads to strange errors (due to ‘invisible’

symbols). Rather write the code into an .m-file yourself.

n_max = 600;

mu = 1.23;

sigma = 3.21;

x = normrnd(mu,sigma,100,1);

sims = 400;

for n= 1:n_max

x_bar = zeros(1,sims);

for i = 1:sims

x = normrnd(mu,sigma,n,1);

x_bar(i) = mean(x);

end

histogram(x_bar,"Normalization","pdf")

xlim([mu-2.8,mu+2.8]);ylim([0,4]);

line([mu, mu], [0,4], ’LineWidth’, 3, ’Color’, ’g’);

pause(0.035)

end
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