PROPOSED SOLUTIONS
 HOMEWORK 2
 GRA6039 ECONOMETRICS WITH PROGRAMMING
 AUTUMN 2020

EMIL A. STOLTENBERG

Solution to Ex. 1. (a) The rv X takes its values in $\mathcal{X}=\{0,1\}$, with distribution $\operatorname{Pr}(X=1)=p$. The expectation of X is

$$
\mathrm{E} X=\sum_{x \in \mathcal{X}} x f(x)=\sum_{x=0}^{1} x f(x)=\sum_{x=0}^{1} x p^{x}(1-p)^{1-x}=0 \times(1-p)+1 \times p=p
$$

(b) The variance of X is

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}\left[(X-p)^{2}\right]=\sum_{x=0}^{1}(x-p)^{2} p^{x}(1-p)^{1-x} \\
& =(0-p)^{2}(1-p)+(1-p)^{2} p=p^{2}(1-p)+(1-p)^{2} p \\
& =p(1-p)\{p+(1-p)\}=p(1-p)
\end{aligned}
$$

(c) We have the function $g(x)=2 x-1$. With X a rv, then $g(X)$ is a rv. Its expectation is

$$
\mathrm{E} g(X)=\sum_{x \in \mathcal{X}} g(x) f(x)=\sum_{x=0}^{1}(2 x-1) p^{x}(1-p)^{1-x}=-(1-p)+p=2 p-1
$$

so when $p=1 / 2$, the expectation is $\mathrm{E} g(X)=0$. The variance of $g(X)$ is

$$
\begin{aligned}
\operatorname{Var} g(X) & =\mathrm{E}\left[\{2 X-1-(2 p-1)\}^{2}\right]=\mathrm{E}\left[\{2 X-2 p\}^{2}\right]=\mathrm{E}\left[\{2(X-p)\}^{2}\right] \\
& =\sum_{x=0}^{1} 4(x-p)^{2} p^{x}(1-p)^{1-x}=4 \sum_{x=0}^{1}(x-p)^{2} p^{x}(1-p)^{1-x} \\
& =4 \operatorname{Var}(X)=4 p(1-p)
\end{aligned}
$$

so when $p=1 / 2$, then $\operatorname{Var} g(X)=1$. We could also do this exercise in a more 'direct' manner using the properties of expectation and variance that we are soon to derive in Ex. 3.

$$
\mathrm{E}[g(X)]=\mathrm{E}[2 X-1]=2 \mathrm{E}[X]-1=2 p-1
$$

and

$$
\operatorname{Var} g(X)=\operatorname{Var}(2 X-1)=4 \operatorname{Var}(X)=4 p(1-p)
$$

Date: September 9, 2020.

Solution to Ex. 2. We are given the function $f(x)=\theta x^{\theta-1}$ for $x \geq 0$, and zero elsewhere, with $\theta>0$ a parameter. (a) To check that $f(x)$ is a pdf we need to verify that $f(x) \geq 0$ for all x, and that $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$. The function $\theta x^{\theta-1} \geq 0$ for all $x \geq 0$ since $\theta>0$, hence $f(x) \geq 0$ for all x.

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{0}^{1} \theta x^{\theta-1} \mathrm{~d} x=\left.\right|_{0} ^{1} x^{\theta}=1^{\theta}-0^{\theta}=1
$$

(b) We see that

$$
F(x)=\int_{-\infty}^{x} f(y) \mathrm{d} y=\left\{\begin{array}{ll}
0, & x<0 \\
\int_{0}^{x} \theta y^{\theta-1} \mathrm{~d} y, & 0 \leq x \leq 1 \\
1, & x \geq 1
\end{array}= \begin{cases}0, & x<0 \\
x^{\theta}, & 0 \leq x \leq 1 \\
1, & x \geq 1\end{cases}\right.
$$

Often, we will just write $F(x)=x^{\theta}$ for $0 \leq x \leq 1$, with the tacit understanding that since $F(x)$ is a cdf, $F(x)=0$ for $x<0$ and $F(x)=1$ for $x \geq 1$.
(c) $X \sim F$ means that the rv X has the distribution specified by F.

$$
\operatorname{Pr}(X>1 / 2)=1-\operatorname{Pr}(X \leq 1 / 2)=1-F(1 / 2)=1-(1 / 2)^{\theta}
$$

(d) When $X \sim F$,

$$
\mathrm{E} X=\int_{0}^{1} x \theta x^{\theta-1} \mathrm{~d} x=\int_{0}^{1} \theta x^{\theta} \mathrm{d} x=\left.\right|_{0} ^{1} \frac{\theta}{\theta+1} x^{\theta+1}=\frac{\theta}{\theta+1}
$$

Let's first find the variance the 'hard way'

$$
\begin{aligned}
\operatorname{Var}(X) & =\int_{0}^{1}(x-\mathrm{E}[X])^{2} \theta x^{\theta-1} \mathrm{~d} x=\int_{0}^{1}\left\{x^{2}-2 x \mathrm{E}[X]+(\mathrm{E}[X])^{2}\right\} \theta x^{\theta-1} \mathrm{~d} x \\
& =\int_{0}^{1} x^{2} \theta x^{\theta-1} \mathrm{~d} x-2 \mathrm{E}[X] \int x \theta x^{\theta-1} \mathrm{~d} x+(\mathrm{E}[X])^{2} \int_{0}^{1} \theta x^{\theta-1} \mathrm{~d} x \\
& =\int_{0}^{1} \theta x^{\theta+1} \mathrm{~d} x-2(\mathrm{E}[X])^{2}+(\mathrm{E}[X])^{2} \\
& =\left.\right|_{0} ^{1} \frac{\theta}{\theta+2} x^{\theta+2}-(\mathrm{E}[X])^{2}=\frac{\theta}{\theta+2}-\frac{\theta^{2}}{(\theta+1)^{2}}=\frac{\theta}{(\theta+2)(\theta+1)^{2}} .
\end{aligned}
$$

The 'easy' is to use what we are to show in Ex. 3 (and basically showed just above), namely that

$$
\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

then use that $\mathrm{E}[X]=\theta /(\theta+1)$ and compute $\mathrm{E}\left[X^{2}\right]=\int_{0}^{1} x^{2} \theta x^{\theta-1} \mathrm{~d} x=\theta /(\theta+2)$.
When doing possibly confusing integrals and algebra it is a nice habit to check that what you have done is 'probably' correct by way of simulation. Here is a Matlab script where I, for some value of $\theta>0$ that I choose, check the expressions for $\mathrm{E}[X]$ and $\operatorname{Var}(X)$ that we just found.
theta $=1.23$;
$\mathrm{u}=\mathrm{rand}(100,1)$; \% random uniform $r \mathrm{rv}^{\prime} \mathrm{s}$ on $[0,1]$
$\mathrm{x}=\mathrm{u} .{ }^{\wedge}(1 /$ theta) $; \%$ probability integral transform
mean(x); EX = theta/(theta +1);

```
var(x); VarX = theta/((theta + 2)*(theta + 1)^2);
```

fprintf("\%f should be close to \%f $\backslash n$ ", [mean(x), EX])
fprintf("\%f should be close to \%f $\mathrm{fn} ",[\operatorname{var}(\mathrm{x}), \operatorname{VarX} \mathrm{X})$

Solution to Ex. 3. Proposition 2.3 in the Lecture notes says that the expectation is linear, that is, for rv's X and Y and constants a, b and c,

$$
\mathrm{E}[a X+b Y+c]=a \mathrm{E}[X]+b \mathrm{E}[Y]+c
$$

For what follows, you must remember that $\mathrm{E}[X]$ and $\mathrm{E}[Y]$ are constants, just like a, b and c above, that is, the expectations are not rv's. We'll use Proposition 2.3 over and over in what follows. (a)

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\mathrm{E}\left[X^{2}-2 X \mathrm{E}[X]+(\mathrm{E}[X])^{2}\right] \\
& =\mathrm{E}\left[X^{2}\right]-2 \mathrm{E}[X] \mathrm{E}[X]+(\mathrm{E}[X])^{2}=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
\end{aligned}
$$

(b) For a constant a

$$
\begin{aligned}
\operatorname{Var}(a X) & =\mathrm{E}\left[(a X-\mathrm{E}[a X])^{2}\right]=\mathrm{E}\left[(a X-a \mathrm{E}[X])^{2}\right] \\
& =\mathrm{E}\left[a^{2}(X-\mathrm{E}[X])^{2}\right]=a^{2} \mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=a^{2} \operatorname{Var}(X)
\end{aligned}
$$

(c) For a constant a

$$
\begin{aligned}
\operatorname{Var}(a+X) & =\mathrm{E}\left[(a+X-\mathrm{E}[a+X])^{2}\right]=\mathrm{E}\left[(a+X-a-\mathrm{E}[X])^{2}\right] \\
& =\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\operatorname{Var}(X)
\end{aligned}
$$

(d)

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathrm{E}\{(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])\}=\mathrm{E}\{X Y-X \mathrm{E}[Y]-Y \mathrm{E}[X]+\mathrm{E}[X] \mathrm{E}[Y]\} \\
& =\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]-\mathrm{E}[Y] \mathrm{E}[X]+\mathrm{E}[X] \mathrm{E}[Y] \\
& =\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]
\end{aligned}
$$

(e) If X and Y are independent, then $\mathrm{E}[X Y]=\mathrm{E}[X] \mathrm{E}[Y]$, and we get

$$
\operatorname{Cov}(X, Y)=\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]=\mathrm{E}[X] \mathrm{E}[Y]-\mathrm{E}[X] \mathrm{E}[Y]=0
$$

(e)

$$
\begin{aligned}
\operatorname{Var}(a X+b Y) & =\mathrm{E}\left[(a X+b Y)^{2}\right]-(\mathrm{E}[a X+b Y])^{2} \\
& =\mathrm{E}\left[a^{2} X^{2}+b^{2} Y^{2}+2 a b X Y\right]-(a \mathrm{E}[X]+b \mathrm{E}[Y])^{2} \\
& =a^{2} \mathrm{E}\left[X^{2}\right]+b^{2} \mathrm{E}\left[Y^{2}\right]+2 a b \mathrm{E}[X Y]-a^{2}(\mathrm{E}[X])^{2}-b^{2}(\mathrm{E}[Y])^{2}-2 a b \mathrm{E}[X] \mathrm{E}[Y] \\
& =a^{2}\left\{\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}\right\}+b^{2}\left\{\mathrm{E}\left[Y^{2}\right]-(\mathrm{E}[Y])^{2}\right\}+2 a b\{\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]\} \\
& =a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)
\end{aligned}
$$

Importantly, when X and Y are independent,

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)
$$

Solution to Ex. 4. X_{1}, \ldots, X_{n} are i.i.d. rv's with expectation μ and variance σ^{2}. As usual, $\bar{X}_{n}=(1 / n) \sum_{i=1}^{n} X_{i}$. In this exercise we also use Prop. 2.3 from the Lecture notes, and in particular that $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$ when X and Y are independent, as we established in Ex. 3(e). (a)

$$
\mathrm{E}\left[\bar{X}_{n}\right]=\mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mu=\frac{n}{n} \mu=\mu
$$

(b)

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma^{2}=\frac{n}{n^{2}} \sigma^{2}=\frac{\sigma^{2}}{n} .
$$

Notice that here the independence of X_{1}, \ldots, X_{n} is very important, for we actively use the independence assumption to get the second equality.
(c) Because the variance of the empirical mean, namely σ^{2} / n becomes smaller and smaller as we increase the sample size n.

Solution to Ex. 5. The rv X has the exponential distribution, that is, its pdf is $f(x)=$ $\theta \exp (-\theta x)$ for $x \geq 0$ and $f(x)=0$ for $x<0$, where $\theta>0$ is some parameter. We will often write $X \sim \operatorname{Expo}(\theta)$.
(a) Clearly, $f(x) \geq 0$ for all x. Moreover,

$$
\int_{0}^{\infty} \theta \exp (-\theta x) \mathrm{d} x=-\left.\right|_{0} ^{\infty} \exp (-\theta x)=-0+1=1
$$

(b) For $x<0, \int_{-\infty}^{x} f(y) \mathrm{d} y=0$, while for $x>0$,

$$
F(x)=\int_{0}^{x} \theta \exp (-\theta y) \mathrm{d} y=-\left.\right|_{0} ^{x} \exp (-\theta y)=-\exp (-\theta x)+1=1-\exp (-\theta x)
$$

(c) Use integration by parts

$$
\begin{aligned}
\mathrm{E} X & =\int_{0}^{\infty} x \theta \exp (-\theta x) \mathrm{d} x=-\left.\right|_{0} ^{\infty} x \exp (-\theta x)+\int_{0}^{\infty} e^{-\theta x} \mathrm{~d} x \\
& =0+\int_{0}^{\infty} e^{-\theta x} \mathrm{~d} x=-\left.\frac{1}{\theta}\right|_{0} ^{\infty} e^{-\theta x}=-\frac{1}{\theta}(0-1)=\frac{1}{\theta} .
\end{aligned}
$$

where we use l'Hôpital's rule to show that,

$$
\lim _{x \rightarrow \infty} x \exp (-\theta x)=\lim _{x \rightarrow \infty} \frac{x}{\exp (\theta x)}=\lim _{x \rightarrow \infty} \frac{1}{\theta \exp (x)}=0
$$

Similarly,

$$
\begin{aligned}
E X^{2} & =\int_{0}^{\infty} x^{2} \theta \exp (-\theta x) \mathrm{d} x=-\left.\right|_{0} ^{\infty} x^{2} \exp (-\theta x)+\int_{0}^{\infty} 2 x e^{-\theta x} \mathrm{~d} x \\
& =0+\int_{0}^{\infty} 2 x e^{-\theta x} \mathrm{~d} x=\frac{2}{\theta} \int_{0}^{\infty} x \theta e^{-\theta x} \mathrm{~d} x=\frac{2}{\theta} \mathrm{E}[X]=\frac{2}{\theta^{2}}
\end{aligned}
$$

because $\lim _{x \rightarrow \infty} x^{2} \exp (-\theta x)=0$. Using Ex. 3(a),

$$
\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\frac{2}{\theta^{2}}-\frac{1}{\theta^{2}}=\frac{1}{\theta^{2}}
$$

(d) Define the rv Z by

$$
Z= \begin{cases}1, & \text { if } X \geq \log (2) / \theta \\ 0, & \text { if } X \geq \log (2) / \theta\end{cases}
$$

Notice that Z is a Bernoulli random variable ('a coin flip') like the random variable we met in Ex. 1. This means that if we can find the success probability $\operatorname{Pr}(Z=1)$, we can can use Ex. 1 to find $\mathrm{E} Z$ and $\operatorname{Var} Z$.

$$
\begin{aligned}
\operatorname{Pr}(Z=1) & =\operatorname{Pr}(X \geq \log (2) / \theta)=1-\operatorname{Pr}(X \leq \log (2) / \theta)=1-F(\log (2) / \theta) \\
& =1-[1-\exp \{-\theta(\log (2) / \theta)\}]=\exp \{-\theta(\log (2) / \theta)\} \\
& =\exp (-\log (2))=\exp (\log (1 / 2))=\frac{1}{2}
\end{aligned}
$$

Which shows that Z is Bernoulli with success probability $1 / 2$, so from Ex. 1 we get

$$
\mathrm{E} Z=\frac{1}{2}, \quad \text { and } \quad \operatorname{Var} Z=\frac{1}{2}\left(1-\frac{1}{2}\right)=\frac{1}{4}
$$

Solution to Ex. 6. Let Z_{1} and Z_{2} be independent standard normal random variables. Set

$$
\begin{aligned}
& X=\sigma_{X} Z_{1}+\mu_{X} \\
& Y=\sigma_{Y}\left(\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}\right)+\mu_{Y}
\end{aligned}
$$

where $\sigma_{X}, \sigma_{Y}>0$, the correlation coefficient $\rho \in(-1,1)$, and μ_{X} and μ_{Y} are real numbers.
Since Z_{1} and Z_{2} are independent independent standard normal random variables,

$$
\mathrm{E} Z_{j}=0, \quad \operatorname{Var}\left(Z_{j}\right)=\mathrm{E}\left[Z_{j}^{2}\right]=1, \quad \text { for } \mathrm{j}=1,2
$$

and $\mathrm{E}\left[Z_{1} Z_{2}\right]=\mathrm{E}\left[Z_{1}\right] \mathrm{E}\left[Z_{2}\right]=0$.
(a) Use Proposition 2.3 from the Lecture notes

$$
\mathrm{E}[X]=\mathrm{E}\left[\sigma_{X} Z_{1}+\mu_{X}\right]=\sigma_{X} \mathrm{E}\left[Z_{1}\right]+\mu_{X}=\mu_{X}
$$

and

$$
\mathrm{E}[Y]=\mathrm{E}\left[\sigma_{Y}\left(\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}\right)+\mu_{Y}\right]=\sigma_{Y} \rho \mathrm{E}\left[Z_{1}\right]+\sigma_{Y} \sqrt{1-\rho^{2}} \mathrm{E}\left[Z_{2}\right]+\mu_{Y}=\mu_{Y}
$$

(b) In this exercise and in (c) the independence of Z_{1} and Z_{2} is important, and we'll use that $\operatorname{Var}\left(a Z_{1}+b Z_{2}\right)=a^{2} \operatorname{Var}\left(Z_{1}\right)+b^{2} \operatorname{Var}\left(Z_{2}\right)=a^{2}+b^{2}$, and that $\mathrm{E}\left[Z_{1} Z_{2}\right]=\mathrm{E}\left[Z_{1}\right] \mathrm{E}\left[Z_{2}\right]=$ 0 .

$$
\operatorname{Var}(X)=\operatorname{Var}\left(\sigma_{X} Z_{1}+\mu_{X}\right)=\sigma_{X}^{2} \operatorname{Var}\left(Z_{1}\right)=\sigma_{X}^{2}
$$

and

$$
\begin{aligned}
\operatorname{Var}(Y) & =\operatorname{Var}\left(\sigma_{Y}\left(\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}\right)+\mu_{Y}\right) \\
& =\sigma_{Y}^{2} \rho^{2} \operatorname{Var}\left(Z_{1}\right)+\sigma_{Y}^{2}\left(1-\rho^{2}\right) \operatorname{Var}\left(Z_{2}\right)=\sigma_{Y}^{2} \rho^{2}+\sigma_{Y}^{2}\left(1-\rho^{2}\right)=\sigma_{Y}^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathrm{E}\left[\sigma_{X} Z_{1}\left(\sigma_{Y}\left(\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}\right)\right)\right] \\
& =\sigma_{X} \sigma_{Y} \rho \mathrm{E}\left[Z_{1}^{2}\right]+\sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}} \mathrm{E}\left[Z_{1} Z_{2}\right] \\
& =\rho \sigma_{X} \sigma_{Y}+\sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}} \mathrm{E}\left[Z_{1}\right] \mathrm{E}\left[Z_{2}\right]=\rho \sigma_{X} \sigma_{Y}
\end{aligned}
$$

We say that (X, Y) has the bivariate normal distribution with expectation vector (μ_{X}, μ_{Y}), and covariance matrix

$$
\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right)
$$

and write

$$
\binom{X}{Y} \sim \mathrm{~N}_{2}\left(\binom{\mu_{X}}{\mu_{Y}},\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right)\right)
$$

The parameter $-1 \leq \rho \leq 1$ is the correlation,

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

The probability density function of the bivariate normal distribution is

$$
\begin{aligned}
f(x, y)= & \frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \\
& \times \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}-2 \rho \frac{\left(x-\mu_{X}\right)\left(x-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right)\right\} .
\end{aligned}
$$

Solution to Ex. 7. X_{1}, \ldots, X_{n} are i.i.d. random variables with the uniform distribution on $[0, \theta]$. The pdf of this distribution is $f(x)=1 / \theta$ for $x \in[0, \theta]$, and $f(x)=0$ for x outside of $[0, \theta]$.
(a) The cdf of one uniform rv is

$$
F(x)=\int_{0}^{x} \frac{1}{\theta} \mathrm{~d} x=\frac{x}{\theta}, \quad \text { for } x \in[0, \theta]
$$

and $F(x)=0$ for $x<0$ and $F(x)=1$ for $x \geq \theta$.
(b) We have the random variable M_{n} defined to be the largest of the X_{1}, \ldots, X_{n},

$$
M_{n}=\max _{i \leq n} X_{i}=\max \left\{X_{1}, \ldots, X_{n}\right\}
$$

Now, we want to find the cdf of M_{n}. Note that if $M_{n} \leq x$ then all the X_{i} s must be smaller than x, so these two events are the same

$$
\left\{M_{n} \leq x\right\}=\left\{X_{i} \leq x \text { for all } i\right\}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left(M_{n} \leq x\right) & =\operatorname{Pr}\left(X_{i} \leq x \text { for all } i\right)=\operatorname{Pr}\left(X_{1} \leq x, \ldots, X_{n} \leq x\right) \\
& =\operatorname{Pr}\left(X_{1} \leq x\right) \cdots \operatorname{Pr}\left(X_{n} \leq x\right)=F(x) \cdots F(x)=F(x)^{n},
\end{aligned}
$$

where we in the third equality use that X_{1}, \ldots, X_{n} are independent, and in the fourth equality that they are identically distributed.

Notes on Ex. 8 and Ex. 9. You have to play around in Matlab to learn it. Remember to always save your scripts in an .m-file! Some of the point of Ex. 9 is to see how the empirical mean $\bar{X}_{n}=(1 / n) \sum_{i=1}^{n} X_{i}$ of an i.i.d. sample X_{1}, \ldots, X_{n} centers around the expectation, say $\mu=\mathrm{E}\left[X_{1}\right]=\cdots=\mathrm{E}\left[X_{n}\right]$.

Here is a Matlab script that makes a little 'movie' where we see this. Be careful with copy-pasting Matlab code from .pdf's, it often leads to strange errors (due to 'invisible' symbols). Rather write the code into an .m-file yourself.

```
n_max = 600;
mu = 1.23;
sigma = 3.21;
x = normrnd(mu,sigma,100,1);
sims = 400;
for n= 1:n_max
    x_bar = zeros(1,sims);
    for i = 1:sims
            x = normrnd(mu,sigma,n,1);
            x_bar(i) = mean(x);
    end
    histogram(x_bar,"Normalization","pdf")
    xlim([mu-2.8,mu+2.8]);ylim([0,4]);
    line([mu, mu], [0,4], 'LineWidth', 3, 'Color', 'g');
    pause(0.035)
end
```

Department of Economics, BI Norwegian Business School
Email address: emil.a.stoltenberg@bi.no

