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EMIL A. STOLTENBERG

Solutions to Ex. 1. The random variable X has the Poisson distribution with parameter

θ > 0. We write X ∼ Poisson(θ). The pmf of this distribution is

fθ(x) =
1

x!
θx exp(−θ), for x ∈ {0, 1, 2, . . .},

and f(x) = 0 elsewhere, with θ > 0. (a) The expectation of X is

E [X] =

∞∑
x=0

xfθ(x) =

∞∑
x=0

x
1

x!
θx exp(−θ) =

∞∑
x=1

x
1

x!
θx exp(−θ) =

∞∑
x=1

1

(x− 1)!
θx exp(−θ)

=
∞∑
x=0

1

x!
θx+1 exp(−θ) = θ

∞∑
x=0

1

x!
θx exp(−θ) = θ,

where the last equality follows because
∑∞

x=0(1/x!)θx exp(−θ) = 1 since fθ(x) is a pmf.

(b) To find the variance of X we’ll use that Var(X) = E [X2] − (E [X])2, so we need to

find E [X2]:

E [X2] =
∞∑
x=0

x2fθ(x) =
∞∑
x=0

x2
1

x!
θx exp(−θ) =

∞∑
x=1

x
1

(x− 1)!
θx exp(−θ)

=
∞∑
x=0

(x+ 1)
1

x!
θx+1 exp(−θ) = θ

{ ∞∑
x=0

x
1

x!
θx exp(−θ) +

∞∑
x=0

1

x!
θx exp(−θ)

}
= θ
{

E [X] +

∞∑
x=0

fθ(x)
}

= θ(θ + 1) = θ2 + θ,

then

Var(X) = E [X2]− (E [X])2 = θ2 + θ − θ2 = θ.
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(b) Let X1, . . . , Xn be i.i.d. Poisson with expectation θ > 0. The log-likelihood function

is

`n(θ) =
n∑
i=1

log fθ(Xi) =
n∑
i=1

{Xi log(θ)− θ − log(Xi!)}

= log(θ)
n∑
i=1

Xi − nθ −
n∑
i=1

log(Xi!).

(c) The first derivative of `n(θ) is

d

dθ
`n(θ) =

1

θ

n∑
i=1

Xi − n,

and when we set this equal to zero and solve for θ we find the maximum likelihood estimator

θ̂n =
1

n

n∑
i=1

Xi = X̄n.

(d) The expectation of θ̂n is (using Prop. 2.3 in the Lecture notes)

E [θ̂n] = E
[ 1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi] =
1

n

n∑
i=1

θ =
n

n
θ = θ.

Since the X1, . . . , Xn are independent, Cov(Xi, Xj) = 0 whenever i 6= j (see HW2,

Ex. 3(e)), so

Var(θ̂n) = Var
( 1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) +
2

n2

∑
1≤i<j≤n

Cov(Xi, Xj)

=
1

n2

n∑
i=1

Var(Xi) =
1

n2

n∑
i=1

θ =
n

n2
θ =

θ

n
.

This is easier to see if n = 2. Then (see HW2, Ex. 3(f))

Var
(1

2

2∑
i=1

Xi

)
= Var

(X1

2
+
X2

2

)
=

1

4
Var(X1) +

1

4
Var(X2) +

2

4
Cov(X1, X2),

and Cov(X1, X2) = 1 when X1 and X2 are independent. (e) Here is a Matlab script where
we estimate θ

x = [2,3,4,1,4,1,1,0,0,2];

mean(x) % = 1.8

thus θ̂n(x1, . . . , xn) = θ̂n(2, 3, 4, 1, 4, 1, 1, 0, 0, 2) = 1.8, this is our estimate for θ. (f) Use
the following Matlab code to make the histogram in Figure 1. Here we set θ = 2.34 and
n = 1000.

x = poissrnd(2.34,1,1000)

histogram(x,"Normalization","pdf")
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Figure 1. A density histogram of n = 1000 independent draws from a

Poisson distribution with θ = 2.34

Solutions to Ex. 2. The pdf of the Pareto distribution is

fα(x) =
αxαmin

xα+1
for x ∈ [xmin,∞), (1)

and f(x) = 0 for x < xmin, with α > 0 and xmin > 0. Until exercise (i) we’ll assume that

xmin is a known number. (a) For x < xmin, the cdf Fα(x) = 0. For x > xmin, the cdf is

Fα(x) =

∫ x

xmin

αxαmin

yα+1
dy = −

∣∣∣∣x
xmin

xαmin

yα
= −x

α
min

xα
+
xαmin

xαmin

= 1− xαmin

xα
.

The cdf of the Pareto distribution is therefore,

Fα(x) =

{
1− (xmin/x)α, x ≥ xmin,

0, x < xmin.

(b) Assume that α > 1. The expectation if X is

E [X] =

∫ ∞
xmin

x
αxαmin

xα+1
dx =

∫ ∞
xmin

αxαmin

xα
dx

= −
∣∣∣∣∞
xmin

αxαmin

α− 1

1

xα−1
=
αxαmin

α− 1

1

xα−1min

=
αxmin

α− 1
.

When α < 1, the expectation is infinite. (c) Assume that α > 2. Again we use Var(X) =

E [X2]− (E [X])2, and compute

E [X2] =

∫ ∞
xmin

x2
αxαmin

xα+1
dx =

∫ ∞
xmin

αxαmin

xα−1
dx

= −
∣∣∣∣∞
xmin

αxαmin

α− 2

1

xα−2
=
αxαmin

α− 2

1

xα−2min

=
αx2min

α− 2
.
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Then

Var(X) = E [X2]− (E [X])2 =
αx2min

α− 2
− α2x2min

(α− 1)2
=

αx2min

(α− 2)(α− 1)2
.

(d) Suppose that X1, . . . , Xn are i.i.d. samples from the Pareto distribution. The log-

likelihood function is

`n(α) =
n∑
i=1

log fα(Xi) =
n∑
i=1

{log(α) + α log(xmin)− (α+ 1) log(Xi)}

=
n∑
i=1

{log(α)− α log(Xi/xmin)− log(Xi)}

= n log(α)− α
n∑
i=1

log(Xi/xmin)−
n∑
i=1

log(Xi).

(e) Differentiate `n(α) with respect to α and set this equal to zero,

d

dα
`n(α) =

n

α
−

n∑
i=1

log(Xi/xmin) = 0.

Solve for α and we find the maximum likelihood estimator

α̂n =
n∑n

i=1 log(Xi/xmin)
=

1
1
n

∑n
i=1 log(Xi/xmin)

.

(f) Here is a Matlab script where we use the estimator α̂n to estimate α

x = [0.58,1.44,1.03,23.75,0.59,2.13,3.39,0.80,1.28,3.89];

xmin = 0.5;

1/mean(log(x/xmin))

Our estimate of α is 0.7825. (g) The inverse of the cdf Fα that we found in (a) is

F−1α (u) =
xmin

(1− u)1/α
.

(h) A natural way of estimating the 90th percentile x0.9 of the wealth distribution in the

population from which the data in (f) stem, is to plug the maximum likelihood estimator

α̂n into F−1α (u), then

x̂0.9 = F−1α̂n
(0.9) =

xmin

(1− 0.9)1/α̂n
=

0.5

(0.1)1/0.7825
= 9.4826.

This means that according to our estimates the 10 percent most wealthy have a wealth of

9.48 millions or more.

(i) Now suppose that xmin is also unknown. Looking at the likelihood function,

`n(α, xmin) = n log(α)− α
n∑
i=1

log(Xi/xmin)−
n∑
i=1

log(Xi)

= n log(α) + nα log(xmin)− (α+ 1)

n∑
i=1

log(Xi),
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we see that `n(α, xmin) is increasing in xmin. But since Xi ≥ xmin for all i, xmin cannot be

bigger than the smallest Xi. Therefore, the maximum likelihood estimators become

x̂min = min
i≤n

Xi = min{X1, . . . , Xn},

α̂n =
n∑n

i=1 log(Xi/x̂min)
.

Solutions to Ex. 3. Suppose that Y1, . . . , Yn are i.i.d. random variables from the normal

distribution with expectation µ and variance σ2 > 0. In this exercise we take both µ and

σ2 to be unknown, and want to estimate these using the maximum likelihood estimator.

Recall that the pdf of the normal distribution is

f(y;µ, σ2) =
1√
2πσ

exp{− 1

2σ2
(y − µ)2},

for y ∈ (−∞,∞).

(a) The log-likelihood function is

`n(µ, σ2) =
n∑
i=1

log f(yi;µ, σ
2) =

n∑
i=1

{−1

2
log(σ2)− 1

2σ2
(Yi − µ)2 − log

√
2π}

= −n
2

log(σ2)− 1

2σ2

n∑
i=1

(Yi − µ)2 − n log(
√

2π).

(b) Differentiate with respect to µ and with respect to σ2, and set both partial derivatives

equal to zero,

∂

∂µ
`n(µ, σ2) =

1

σ2

n∑
i=1

(Yi − µ) = 0,

∂

∂σ2
`n(µ, σ2) = − n

2σ2
+

1

2σ4

n∑
i=1

(Yi − µ)2 = 0.

This is a system of two equations in two unknowns, the unknowns being µ and σ2. The

solution gives the maximum likelihood estimators, they are

µ̂n =
1

n

n∑
i=1

Yi = Ȳn, and σ̂2n =
1

n

n∑
i=1

(Yi − Ȳn)2.

(c) An unbiased estimator is an estimator whose expectation equals what it is an estimator

for. That is, if E [µ̂n] = µ, then we call µ̂n unbiased for µ, or simply unbiased. Using

Prop. 2.3 in the lecture notes we see that µ̂n is unbiased, because.

E [µ̂n] = E
( 1

n

n∑
i=1

Yi
)

=
1

n

n∑
i=1

E [Yi] =
1

n

n∑
i=1

µ = µ.

(d) To show that σ̂2n is biased for σ2, we must show that E [σ̂2n] does not equal σ2. To

compute the expectation of σ̂2n let’s first write

σ̂2n =
1

n

n∑
i=1

(Yi − Ȳn)2 =
1

n

n∑
i=1

Y 2
i − Ȳ 2

n .
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By Prop. 2.3 (linearity of the expectation) we have that

E [σ̂2n] =
1

n

n∑
i=1

E [Y 2
i ]− E [Ȳ 2

n ].

We can compute these two expectations using the Var(Y ) = E [Y 2] − (E [Y ])2 formula.

For each i

E [Y 2
i ] = Var (Yi) + (E [Yi])

2 = σ2 + µ2.

Since the Y1, . . . , Yn are independent

Var(Ȳn) =
σ2

n
.

Therefore

E [Ȳ 2
n ] = Var (Ȳn) + (E [Ȳn])2 =

σ2

n
+ µ2.

Inserting this is our expression for E [σ̂2n] we get

E [σ̂2n] =
1

n

n∑
i=1

(σ2 + µ2)− σ2

n
− µ2 = σ2 − σ2

n
=
n− 1

n
σ2,

which shows that σ̂2n is biased. (e) We now construct an estimator that is unbiased for

σ2. Since E [σ̂2n] = (n− 1)σ2/n, we see that the estimator

σ̃2n =
n

n− 1
σ̂2n,

is unbiased, because

E [σ̃2n] = E
[ n

n− 1
σ̂2n
]

=
n

n− 1
E
[
σ̂2n
]

=
n

n− 1

n− 1

n
σ2 = σ2.

Notice that in this exercise we only used that the Y1, . . . , Yn we i.i.d. with expectation µ

and variance σ2. We did not use that they are normally distributed. Our derivation of the

estimator σ̃2n is the reason for the empirical variance of a sample X1, . . . , Xn being defined

as

s2X =
1

n− 1

n∑
i=1

(Xi − X̄n)2.

The n− 1 in the denominator makes s2X unbiased for the true variance!

Solutions to Ex. 4. Assume that a test for Covid-19 is such that it gives the correct

result in 99 percent of the cases when a person is infected, and the correct result in 96

percent of the cases when a person is not infected (these are called the specificity and

sensitivity of a test, respectively). Assume also that 34 out of 100 000 people in Oslo are

infected with Covid-19. Of all the people in Oslo, a person is chosen at random and tested.

(a) Let ‘+’ indicate positive test, and ‘sick’ indicate that the person is truly infected.

Then Bayes rule gives

Pr(sick | +) =
Pr(+ | sick)Pr(sick)

Pr(+)
.
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There are two possibilities: a person is either sick or not sick, the law of total probability

therefore gives,

Pr(+) = Pr(+ | sick)Pr(sick) + Pr(+ | not sick)Pr(not sick),

so that

Pr(sick | +) =
Pr(+ | sick)Pr(sick)

Pr(+ | sick)Pr(sick) + Pr(+ | not sick)Pr(not sick)
.

The numbers given in the text are Pr(+ | sick) = 0.99 (the specificity of the test), Pr(+ |
not sick) = 0.04 (which is 1 minus the sensitivity of the test), and Pr(sick) = 34/105, so

that Pr(not sick) = 1− 34/105 = 99966/105. Then

Pr(sick | +) =
0.99× 34

105

0.99× 34
105

+ 0.04× 99966
105

=
0.99× 34

0.99× 34 + 0.04× 99966
= 0.00835.

(b) Run the this Matlab script a few times to estimate Pr(sick | +) = 0.00835 on simulated

data.

sims = 10^5;

sick = binornd(1,34/10^5,1,sims);

positive = zeros(1,sims);

for i = 1:sims

if sick(i) == 1

positive(i) = binornd(1,0.99,1,1);

else

positive(i) = binornd(1,0.04,1,1);

end

end

pr_hat = mean(sick.*positive)/mean(positive);

pr = 0.99*34/(0.99*34 + 0.04*99966);

fprintf("%f should be close to %f\n",[pr_hat,pr])

(c) In the ‘real Oslo’, why does your answer from (a) not mean that a person who tests

positive is most probably healthy? The most important reason for this is that the people

who get’s tested are not randomly selected. They have symptoms. Thus, in the population

of people who actually gets tested, the probability Pr(sick) is much higher than 34/105.

This, in turn makes the probability Pr(sick | +) much higher than what we found in (a).

Also, but less important, the numbers for the sensitivity and specificity of the test are just

numbers I made up. Perhaps the test is better than what we postulated in this exercise?

Here is an article (in Norwegian) about the sensitivity and specificity of tests for Covid-

19. https://www.faktisk.no/artikler/r8q/er-14-av-15-positive-koronaprover-falske

Department of Economics, BI Norwegian Business School

Email address: emil.a.stoltenberg@bi.no

https://www.faktisk.no/artikler/r8q/er-14-av-15-positive-koronaprover-falske
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