PROPOSED SOLUTIONS
 HOMEWORK 3
 GRA6039 ECONOMETRICS WITH PROGRAMMING
 AUTUMN 2020

EMIL A. STOLTENBERG

Solutions to Ex. 1. The random variable X has the Poisson distribution with parameter $\theta>0$. We write $X \sim \operatorname{Poisson}(\theta)$. The pmf of this distribution is

$$
f_{\theta}(x)=\frac{1}{x!} \theta^{x} \exp (-\theta), \quad \text { for } x \in\{0,1,2, \ldots\}
$$

and $f(x)=0$ elsewhere, with $\theta>0$. (a) The expectation of X is

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{x=0}^{\infty} x f_{\theta}(x)=\sum_{x=0}^{\infty} x \frac{1}{x!} \theta^{x} \exp (-\theta)=\sum_{x=1}^{\infty} x \frac{1}{x!} \theta^{x} \exp (-\theta)=\sum_{x=1}^{\infty} \frac{1}{(x-1)!} \theta^{x} \exp (-\theta) \\
& =\sum_{x=0}^{\infty} \frac{1}{x!} \theta^{x+1} \exp (-\theta)=\theta \sum_{x=0}^{\infty} \frac{1}{x!} \theta^{x} \exp (-\theta)=\theta
\end{aligned}
$$

where the last equality follows because $\sum_{x=0}^{\infty}(1 / x!) \theta^{x} \exp (-\theta)=1$ since $f_{\theta}(x)$ is a pmf. (b) To find the variance of X we'll use that $\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}$, so we need to find $\mathrm{E}\left[X^{2}\right]$:

$$
\begin{aligned}
\mathrm{E}\left[X^{2}\right] & =\sum_{x=0}^{\infty} x^{2} f_{\theta}(x)=\sum_{x=0}^{\infty} x^{2} \frac{1}{x!} \theta^{x} \exp (-\theta)=\sum_{x=1}^{\infty} x \frac{1}{(x-1)!} \theta^{x} \exp (-\theta) \\
& =\sum_{x=0}^{\infty}(x+1) \frac{1}{x!} \theta^{x+1} \exp (-\theta)=\theta\left\{\sum_{x=0}^{\infty} x \frac{1}{x!} \theta^{x} \exp (-\theta)+\sum_{x=0}^{\infty} \frac{1}{x!} \theta^{x} \exp (-\theta)\right\} \\
& =\theta\left\{\mathrm{E}[X]+\sum_{x=0}^{\infty} f_{\theta}(x)\right\}=\theta(\theta+1)=\theta^{2}+\theta,
\end{aligned}
$$

then

$$
\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\theta^{2}+\theta-\theta^{2}=\theta
$$

(b) Let X_{1}, \ldots, X_{n} be i.i.d. Poisson with expectation $\theta>0$. The log-likelihood function is

$$
\begin{aligned}
\ell_{n}(\theta) & =\sum_{i=1}^{n} \log f_{\theta}\left(X_{i}\right)=\sum_{i=1}^{n}\left\{X_{i} \log (\theta)-\theta-\log \left(X_{i}!\right)\right\} \\
& =\log (\theta) \sum_{i=1}^{n} X_{i}-n \theta-\sum_{i=1}^{n} \log \left(X_{i}!\right)
\end{aligned}
$$

(c) The first derivative of $\ell_{n}(\theta)$ is

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \ell_{n}(\theta)=\frac{1}{\theta} \sum_{i=1}^{n} X_{i}-n
$$

and when we set this equal to zero and solve for θ we find the maximum likelihood estimator

$$
\widehat{\theta}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\bar{X}_{n}
$$

(d) The expectation of $\widehat{\theta}_{n}$ is (using Prop. 2.3 in the Lecture notes)

$$
\mathrm{E}\left[\widehat{\theta}_{n}\right]=\mathrm{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \theta=\frac{n}{n} \theta=\theta
$$

Since the X_{1}, \ldots, X_{n} are independent, $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ whenever $i \neq j$ (see HW2, Ex. 3(e)), so

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\theta}_{n}\right) & =\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\frac{2}{n^{2}} \sum_{1 \leq i<j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \theta=\frac{n}{n^{2}} \theta=\frac{\theta}{n}
\end{aligned}
$$

This is easier to see if $n=2$. Then (see HW2, Ex. 3(f))

$$
\operatorname{Var}\left(\frac{1}{2} \sum_{i=1}^{2} X_{i}\right)=\operatorname{Var}\left(\frac{X_{1}}{2}+\frac{X_{2}}{2}\right)=\frac{1}{4} \operatorname{Var}\left(X_{1}\right)+\frac{1}{4} \operatorname{Var}\left(X_{2}\right)+\frac{2}{4} \operatorname{Cov}\left(X_{1}, X_{2}\right)
$$

and $\operatorname{Cov}\left(X_{1}, X_{2}\right)=1$ when X_{1} and X_{2} are independent. (e) Here is a Matlab script where we estimate θ

```
x = [2,3,4,1,4,1,1,0,0,2];
```

mean(x) \% = 1.8
thus $\widehat{\theta}_{n}\left(x_{1}, \ldots, x_{n}\right)=\widehat{\theta}_{n}(2,3,4,1,4,1,1,0,0,2)=1.8$, this is our estimate for θ. (f) Use the following Matlab code to make the histogram in Figure 1. Here we set $\theta=2.34$ and $n=1000$.
$\mathrm{x}=\mathrm{poissrnd}(2.34,1,1000)$
histogram(x, "Normalization", "pdf")

Figure 1. A density histogram of $n=1000$ independent draws from a Poisson distribution with $\theta=2.34$

Solutions to Ex. 2. The pdf of the Pareto distribution is

$$
\begin{equation*}
f_{\alpha}(x)=\frac{\alpha x_{\min }^{\alpha}}{x^{\alpha+1}} \quad \text { for } x \in\left[x_{\min }, \infty\right) \tag{1}
\end{equation*}
$$

and $f(x)=0$ for $x<x_{\min }$, with $\alpha>0$ and $x_{\min }>0$. Until exercise (i) we'll assume that $x_{\text {min }}$ is a known number. (a) For $x<x_{\min }$, the $\operatorname{cdf} F_{\alpha}(x)=0$. For $x>x_{\min }$, the cdf is

$$
F_{\alpha}(x)=\int_{x_{\min }}^{x} \frac{\alpha x_{\min }^{\alpha}}{y^{\alpha+1}} \mathrm{~d} y=-\left.\right|_{x_{\min }} ^{x} \frac{x_{\min }^{\alpha}}{y^{\alpha}}=-\frac{x_{\min }^{\alpha}}{x^{\alpha}}+\frac{x_{\min }^{\alpha}}{x_{\min }^{\alpha}}=1-\frac{x_{\min }^{\alpha}}{x^{\alpha}} .
$$

The cdf of the Pareto distribution is therefore,

$$
F_{\alpha}(x)= \begin{cases}1-\left(x_{\min } / x\right)^{\alpha}, & x \geq x_{\min } \\ 0, & x<x_{\min }\end{cases}
$$

(b) Assume that $\alpha>1$. The expectation if X is

$$
\begin{aligned}
\mathrm{E}[X] & =\int_{x_{\min }}^{\infty} x \frac{\alpha x_{\min }^{\alpha}}{x^{\alpha+1}} \mathrm{~d} x=\int_{x_{\min }}^{\infty} \frac{\alpha x_{\min }^{\alpha}}{x^{\alpha}} \mathrm{d} x \\
& =-\left.\right|_{x_{\min }} ^{\infty} \frac{\alpha x_{\min }^{\alpha}}{\alpha-1} \frac{1}{x^{\alpha-1}}=\frac{\alpha x_{\min }^{\alpha}}{\alpha-1} \frac{1}{x_{\min }^{\alpha-1}}=\frac{\alpha x_{\min }}{\alpha-1} .
\end{aligned}
$$

When $\alpha<1$, the expectation is infinite. (c) Assume that $\alpha>2$. Again we use $\operatorname{Var}(X)=$ $\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}$, and compute

$$
\begin{aligned}
\mathrm{E}\left[X^{2}\right] & =\int_{x_{\min }}^{\infty} x^{2} \frac{\alpha x_{\min }^{\alpha}}{x^{\alpha+1}} \mathrm{~d} x=\int_{x_{\min }}^{\infty} \frac{\alpha x_{\min }^{\alpha}}{x^{\alpha-1}} \mathrm{~d} x \\
& =-\left.\right|_{x_{\min }} ^{\infty} \frac{\alpha x_{\min }^{\alpha}}{\alpha-2} \frac{1}{x^{\alpha-2}}=\frac{\alpha x_{\min }^{\alpha}}{\alpha-2} \frac{1}{x_{\min }^{\alpha-2}}=\frac{\alpha x_{\min }^{2}}{\alpha-2} .
\end{aligned}
$$

Then

$$
\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\frac{\alpha x_{\min }^{2}}{\alpha-2}-\frac{\alpha^{2} x_{\min }^{2}}{(\alpha-1)^{2}}=\frac{\alpha x_{\min }^{2}}{(\alpha-2)(\alpha-1)^{2}}
$$

(d) Suppose that X_{1}, \ldots, X_{n} are i.i.d. samples from the Pareto distribution. The loglikelihood function is

$$
\begin{aligned}
\ell_{n}(\alpha) & =\sum_{i=1}^{n} \log f_{\alpha}\left(X_{i}\right)=\sum_{i=1}^{n}\left\{\log (\alpha)+\alpha \log \left(x_{\min }\right)-(\alpha+1) \log \left(X_{i}\right)\right\} \\
& =\sum_{i=1}^{n}\left\{\log (\alpha)-\alpha \log \left(X_{i} / x_{\min }\right)-\log \left(X_{i}\right)\right\} \\
& =n \log (\alpha)-\alpha \sum_{i=1}^{n} \log \left(X_{i} / x_{\min }\right)-\sum_{i=1}^{n} \log \left(X_{i}\right)
\end{aligned}
$$

(e) Differentiate $\ell_{n}(\alpha)$ with respect to α and set this equal to zero,

$$
\frac{\mathrm{d}}{\mathrm{~d} \alpha} \ell_{n}(\alpha)=\frac{n}{\alpha}-\sum_{i=1}^{n} \log \left(X_{i} / x_{\min }\right)=0
$$

Solve for α and we find the maximum likelihood estimator

$$
\widehat{\alpha}_{n}=\frac{n}{\sum_{i=1}^{n} \log \left(X_{i} / x_{\min }\right)}=\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \log \left(X_{i} / x_{\min }\right)}
$$

(f) Here is a Matlab script where we use the estimator $\widehat{\alpha}_{n}$ to estimate α
$\mathrm{x}=[0.58,1.44,1.03,23.75,0.59,2.13,3.39,0.80,1.28,3.89]$;
xmin $=0.5$;
$1 /$ mean (log ($x / x m i n)$)
Our estimate of α is 0.7825 . (\mathbf{g}) The inverse of the $\operatorname{cdf} F_{\alpha}$ that we found in (a) is

$$
F_{\alpha}^{-1}(u)=\frac{x_{\min }}{(1-u)^{1 / \alpha}}
$$

(h) A natural way of estimating the 90 th percentile $x_{0.9}$ of the wealth distribution in the population from which the data in (f) stem, is to plug the maximum likelihood estimator $\widehat{\alpha}_{n}$ into $F_{\alpha}^{-1}(u)$, then

$$
\widehat{x}_{0.9}=F_{\widehat{\alpha}_{n}}^{-1}(0.9)=\frac{x_{\min }}{(1-0.9)^{1 / \widehat{\alpha}_{n}}}=\frac{0.5}{(0.1)^{1 / 0.7825}}=9.4826
$$

This means that according to our estimates the 10 percent most wealthy have a wealth of 9.48 millions or more.
(i) Now suppose that $x_{\text {min }}$ is also unknown. Looking at the likelihood function,

$$
\begin{aligned}
\ell_{n}\left(\alpha, x_{\min }\right) & =n \log (\alpha)-\alpha \sum_{i=1}^{n} \log \left(X_{i} / x_{\min }\right)-\sum_{i=1}^{n} \log \left(X_{i}\right) \\
& =n \log (\alpha)+n \alpha \log \left(x_{\min }\right)-(\alpha+1) \sum_{i=1}^{n} \log \left(X_{i}\right),
\end{aligned}
$$

we see that $\ell_{n}\left(\alpha, x_{\min }\right)$ is increasing in $x_{\min }$. But since $X_{i} \geq x_{\min }$ for all $i, x_{\min }$ cannot be bigger than the smallest X_{i}. Therefore, the maximum likelihood estimators become

$$
\begin{aligned}
\widehat{x}_{\min } & =\min _{i \leq n} X_{i}=\min \left\{X_{1}, \ldots, X_{n}\right\}, \\
\widehat{\alpha}_{n} & =\frac{n}{\sum_{i=1}^{n} \log \left(X_{i} / \widehat{x}_{\min }\right)} .
\end{aligned}
$$

Solutions to Ex. 3. Suppose that Y_{1}, \ldots, Y_{n} are i.i.d. random variables from the normal distribution with expectation μ and variance $\sigma^{2}>0$. In this exercise we take both μ and σ^{2} to be unknown, and want to estimate these using the maximum likelihood estimator. Recall that the pdf of the normal distribution is

$$
f\left(y ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2 \sigma^{2}}(y-\mu)^{2}\right\}
$$

for $y \in(-\infty, \infty)$.
(a) The log-likelihood function is

$$
\begin{aligned}
\ell_{n}\left(\mu, \sigma^{2}\right) & =\sum_{i=1}^{n} \log f\left(y_{i} ; \mu, \sigma^{2}\right)=\sum_{i=1}^{n}\left\{-\frac{1}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(Y_{i}-\mu\right)^{2}-\log \sqrt{2 \pi}\right\} \\
& =-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\mu\right)^{2}-n \log (\sqrt{2 \pi})
\end{aligned}
$$

(b) Differentiate with respect to μ and with respect to σ^{2}, and set both partial derivatives equal to zero,

$$
\begin{aligned}
\frac{\partial}{\partial \mu} \ell_{n}\left(\mu, \sigma^{2}\right) & =\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\mu\right)=0 \\
\frac{\partial}{\partial \sigma^{2}} \ell_{n}\left(\mu, \sigma^{2}\right) & =-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(Y_{i}-\mu\right)^{2}=0
\end{aligned}
$$

This is a system of two equations in two unknowns, the unknowns being μ and σ^{2}. The solution gives the maximum likelihood estimators, they are

$$
\widehat{\mu}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\bar{Y}_{n}, \quad \text { and } \quad \widehat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}
$$

(c) An unbiased estimator is an estimator whose expectation equals what it is an estimator for. That is, if $\mathrm{E}\left[\widehat{\mu}_{n}\right]=\mu$, then we call $\widehat{\mu}_{n}$ unbiased for μ, or simply unbiased. Using Prop. 2.3 in the lecture notes we see that $\widehat{\mu}_{n}$ is unbiased, because.

$$
\mathrm{E}\left[\widehat{\mu}_{n}\right]=\mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left[Y_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mu=\mu
$$

(d) To show that $\widehat{\sigma}_{n}^{2}$ is biased for σ^{2}, we must show that $\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]$ does not equal σ^{2}. To compute the expectation of $\widehat{\sigma}_{n}^{2}$ let's first write

$$
\widehat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}-\bar{Y}_{n}^{2}
$$

By Prop. 2.3 (linearity of the expectation) we have that

$$
\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left[Y_{i}^{2}\right]-\mathrm{E}\left[\bar{Y}_{n}^{2}\right]
$$

We can compute these two expectations using the $\operatorname{Var}(Y)=\mathrm{E}\left[Y^{2}\right]-(\mathrm{E}[Y])^{2}$ formula. For each i

$$
\mathrm{E}\left[Y_{i}^{2}\right]=\operatorname{Var}\left(Y_{i}\right)+\left(\mathrm{E}\left[Y_{i}\right]\right)^{2}=\sigma^{2}+\mu^{2}
$$

Since the Y_{1}, \ldots, Y_{n} are independent

$$
\operatorname{Var}\left(\bar{Y}_{n}\right)=\frac{\sigma^{2}}{n}
$$

Therefore

$$
\mathrm{E}\left[\bar{Y}_{n}^{2}\right]=\operatorname{Var}\left(\bar{Y}_{n}\right)+\left(\mathrm{E}\left[\bar{Y}_{n}\right]\right)^{2}=\frac{\sigma^{2}}{n}+\mu^{2}
$$

Inserting this is our expression for $\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]$ we get

$$
\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]=\frac{1}{n} \sum_{i=1}^{n}\left(\sigma^{2}+\mu^{2}\right)-\frac{\sigma^{2}}{n}-\mu^{2}=\sigma^{2}-\frac{\sigma^{2}}{n}=\frac{n-1}{n} \sigma^{2}
$$

which shows that $\widehat{\sigma}_{n}^{2}$ is biased. (e) We now construct an estimator that is unbiased for σ^{2}. Since $\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]=(n-1) \sigma^{2} / n$, we see that the estimator

$$
\widetilde{\sigma}_{n}^{2}=\frac{n}{n-1} \widehat{\sigma}_{n}^{2}
$$

is unbiased, because

$$
\mathrm{E}\left[\widetilde{\sigma}_{n}^{2}\right]=\mathrm{E}\left[\frac{n}{n-1} \widehat{\sigma}_{n}^{2}\right]=\frac{n}{n-1} \mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]=\frac{n}{n-1} \frac{n-1}{n} \sigma^{2}=\sigma^{2}
$$

Notice that in this exercise we only used that the Y_{1}, \ldots, Y_{n} we i.i.d. with expectation μ and variance σ^{2}. We did not use that they are normally distributed. Our derivation of the estimator $\tilde{\sigma}_{n}^{2}$ is the reason for the empirical variance of a sample X_{1}, \ldots, X_{n} being defined as

$$
s_{X}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

The $n-1$ in the denominator makes s_{X}^{2} unbiased for the true variance!
Solutions to Ex. 4. Assume that a test for Covid-19 is such that it gives the correct result in 99 percent of the cases when a person is infected, and the correct result in 96 percent of the cases when a person is not infected (these are called the specificity and sensitivity of a test, respectively). Assume also that 34 out of 100000 people in Oslo are infected with Covid-19. Of all the people in Oslo, a person is chosen at random and tested.
(a) Let ' + ' indicate positive test, and 'sick' indicate that the person is truly infected. Then Bayes rule gives

$$
\operatorname{Pr}(\text { sick } \mid+)=\frac{\operatorname{Pr}(+\mid \text { sick }) \operatorname{Pr}(\text { sick })}{\operatorname{Pr}(+)}
$$

There are two possibilities: a person is either sick or not sick, the law of total probability therefore gives,

$$
\operatorname{Pr}(+)=\operatorname{Pr}(+\mid \text { sick }) \operatorname{Pr}(\text { sick })+\operatorname{Pr}(+\mid \text { not sick }) \operatorname{Pr}(\text { not sick })
$$

so that

$$
\operatorname{Pr}(\text { sick } \mid+)=\frac{\operatorname{Pr}(+\mid \text { sick }) \operatorname{Pr}(\text { sick })}{\operatorname{Pr}(+\mid \text { sick }) \operatorname{Pr}(\text { sick })+\operatorname{Pr}(+\mid \text { not sick }) \operatorname{Pr}(\text { not sick })} .
$$

The numbers given in the text are $\operatorname{Pr}(+\mid$ sick $)=0.99$ (the specificity of the test) $\operatorname{Pr}(+\mid$ not sick) $=0.04$ (which is 1 minus the sensitivity of the test), and $\operatorname{Pr}($ sick $)=34 / 10^{5}$, so that $\operatorname{Pr}($ not sick $)=1-34 / 10^{5}=99966 / 10^{5}$. Then

$$
\operatorname{Pr}(\text { sick } \mid+)=\frac{0.99 \times \frac{34}{10^{5}}}{0.99 \times \frac{34}{10^{5}}+0.04 \times \frac{99966}{10^{5}}}=\frac{0.99 \times 34}{0.99 \times 34+0.04 \times 99966}=0.00835
$$

(b) Run the this Matlab script a few times to estimate $\operatorname{Pr}($ sick $\mid+)=0.00835$ on simulated data.

```
sims = 10^5;
sick = binornd(1,34/10^5,1,sims);
positive = zeros(1,sims);
for i = 1:sims
    if sick(i) == 1
        positive(i) = binornd(1,0.99,1,1);
    else
        positive(i) = binornd(1,0.04,1,1);
    end
end
```

pr_hat $=$ mean(sick.*positive)/mean(positive);
pr $=0.99 * 34 /(0.99 * 34+0.04 * 99966)$;
fprintf("\%f should be close to \%f n ", [pr_hat,pr])
(c) In the 'real Oslo', why does your answer from (a) not mean that a person who tests positive is most probably healthy? The most important reason for this is that the people who get's tested are not randomly selected. They have symptoms. Thus, in the population of people who actually gets tested, the probability $\operatorname{Pr}($ sick $)$ is much higher than $34 / 10^{5}$. This, in turn makes the probability $\operatorname{Pr}(\operatorname{sick} \mid+)$ much higher than what we found in (a). Also, but less important, the numbers for the sensitivity and specificity of the test are just numbers I made up. Perhaps the test is better than what we postulated in this exercise?

Here is an article (in Norwegian) about the sensitivity and specificity of tests for Covid19. https://www.faktisk.no/artikler/r8q/er-14-av-15-positive-koronaprover-falske

Department of Economics, BI Norwegian Business School
Email address: emil.a.stoltenberg@bi.no

