PROPOSED SOLUTIONS
 HOMEWORK 4
 GRA6039 ECONOMETRICS WITH PROGRAMMING
 AUTUMN 2020

EMIL A. STOLTENBERG

Solutions to Ex. 1. Let X_{1}, \ldots, X_{n} be random variables, numbers, observations. (a) Let's try with $n=4$, then

$$
\sum_{i=1}^{3}\left(X_{i+1}-X_{i}\right)=X_{2}-X_{1}+X_{3}-X_{2}+X_{4}-X_{3}=X_{4}-X_{1}
$$

(b) Let $a_{i}=\sum_{j=i}^{3} X_{j}$ for $i=1,2,3$. Then

$$
\begin{aligned}
\sum_{i=1}^{3} a_{i}=a_{1}+a_{2}+a_{3} & =\sum_{j=1}^{3} X_{j}+\sum_{j=2}^{3} X_{j}+\sum_{j=3}^{3} X_{j} \\
& =\left(X_{1}+X_{2}+X_{3}\right)+\left(X_{2}+X_{3}\right)+X_{3}=X_{1}+2 X_{2}+3 X_{3}
\end{aligned}
$$

(c) Generalise what you found in (b). Or

$$
\begin{aligned}
\sum_{i=1}^{n} i X_{i} & =1 X_{1}+2 X_{2}+3 X_{3}+4 X_{4} \cdots+n X_{n} \\
& =\sum_{i=1}^{n} X_{i}+\left\{X_{2}+2 X_{3}+3 X_{4} \cdots+(n-1) X_{n}\right\} \\
& =\sum_{i=1}^{n} X_{i}+\sum_{i=2}^{n} X_{i}+\left\{X_{3}+2 X_{4} \cdots+(n-2) X_{n}\right\} \\
& =\sum_{i=1}^{n} X_{i}+\sum_{i=2}^{n} X_{i}+\cdots++\sum_{i=n-1}^{n} X_{i}+\sum_{i=n}^{n} X_{i} \\
& =\sum_{j=1}^{n} \sum_{i=j}^{n} X_{i}
\end{aligned}
$$

Solutions to Ex. 2. Let X_{1}, \ldots, X_{n} an Y_{1}, \ldots, Y_{m} be random variables, and define the random variables Z_{1}, \ldots, Z_{n+m} as follows,

$$
Z_{1}=X_{1}, \ldots, Z_{n}=X_{n}, Z_{n+1}=Y_{1}, \ldots, Z_{n+m}=Y_{m}
$$

(a)

$$
\begin{aligned}
\bar{Z}_{n+m} & =\frac{1}{n+m} \sum_{i=1}^{n+m} Z_{i}=\frac{1}{n+m}\left(\sum_{i=1}^{n} X_{i}+\sum_{i=1}^{m} Y_{i}\right) \\
& =\frac{1}{n+m}\left(n \bar{X}_{n}+m \bar{Y}_{m}\right)=\frac{n}{n+m} \bar{X}_{n}+\frac{m}{n+m} \bar{Y}_{m}
\end{aligned}
$$

in terms of \bar{X}_{n} and \bar{Y}_{m}. (b) When $n=m$,

$$
\frac{1}{2}\left(\bar{X}_{n}+\bar{Y}_{m}\right)=\bar{Z}_{n+m}
$$

(c) Let a be some constant, then

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-a\right)^{2} & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}+\bar{X}_{n}-a\right)^{2} \\
& =\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}+2\left(\bar{X}_{n}-a\right) \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)+n\left(\bar{X}_{n}-a\right)^{2} \\
& =(n-1) s_{X}^{2}+n\left(\bar{X}_{n}-a\right)^{2},
\end{aligned}
$$

because $\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)=0$ and $(n-1) s_{X}^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$.
(d) Look at

$$
(n+m-1) s_{Z}^{2}=\sum_{i=1}^{n+m}\left(Z_{i}-\bar{Z}_{n+m}\right)^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{Z}_{n+m}\right)^{2}+\sum_{i=1}^{m}\left(Y_{i}-\bar{Z}_{n+m}\right)^{2}
$$

It suffices to only look at one of the sums on the right. Use what we found in (c), with \bar{Z}_{n+m} playing the role of a,

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\bar{Z}_{n+m}\right)^{2} & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}+\bar{X}_{n}-\bar{Z}_{n+m}\right)^{2}=(n-1) s_{X}^{2}+n\left(\bar{X}_{n}-\bar{Z}_{n+m}\right)^{2} \\
& =(n-1) s_{X}^{2}+n\left(\bar{X}_{n}-\frac{n}{n+m} \bar{X}_{n}+\frac{m}{n+m} \bar{Y}_{m}\right)^{2} \\
& =(n-1) s_{X}^{2}+\frac{n m^{2}}{(n+m)^{2}}\left(\bar{X}_{n}-\bar{Y}_{m}\right)^{2}
\end{aligned}
$$

from which we see that

$$
\sum_{i=1}^{m}\left(Y_{i}-\bar{Z}_{n+m}\right)^{2}=(m-1) s_{Y}^{2}+\frac{m n^{2}}{(n+m)^{2}}\left(\bar{X}_{n}-\bar{Y}_{m}\right)^{2}
$$

Some algebra, e.g. $n m^{2}+m n^{2}=n m(n+m)$, then gives,

$$
(n+m-1) s_{Z}^{2}=(n-1) s_{X}^{2}+(m-1) s_{Y}^{2}+\frac{n m}{(n+m)}\left(\bar{X}_{n}-\bar{Y}_{m}\right)^{2}
$$

(e) Run and understand the Matlab code.

Solutions to Ex. 3. Suppose you have a coin whose probability of showing heads equals θ (some unknown parameter). We represent one toss of this coin by the random variable

$$
X= \begin{cases}0, & \text { if tails } \\ 1, & \text { if heads }\end{cases}
$$

which means that

$$
\operatorname{Pr}(X=1)=\theta
$$

We decide to toss this coin until we get a heads up, then stop. By so deciding, we can define a new random variable,

$$
Y=\text { the numbers of tosses until we get heads up, }
$$

so that Y takes its values in $\{1,2,3, \ldots\}$. For example, if we toss tails, tails, heads, then $Y=3$.
(a) We tacitly understand that the tosses are independent, and we can represent the i th toss by the rv X_{i}, so that $\operatorname{Pr}\left(X_{i}=1\right)=\theta$. The few first

$$
\begin{aligned}
& \operatorname{Pr}(Y=1)=\operatorname{Pr}\left(X_{1}=1\right)=\theta \\
& \operatorname{Pr}(Y=2)=\operatorname{Pr}\left(X_{1}=0\right) \operatorname{Pr}\left(X_{2}=1\right)=(1-\theta) \theta \\
& \operatorname{Pr}(Y=3)=\operatorname{Pr}\left(X_{1}=0\right) \operatorname{Pr}\left(X_{2}=0\right) \operatorname{Pr}\left(X_{3}=1\right)=(1-\theta)^{2} \theta \\
& \operatorname{Pr}(Y=4)=\operatorname{Pr}\left(X_{1}=0\right) \operatorname{Pr}\left(X_{2}=0\right) \operatorname{Pr}\left(X_{3}=0\right) \operatorname{Pr}\left(X_{4}=1\right)=(1-\theta)^{3} \theta
\end{aligned}
$$

(b) from which we see a pattern, namely that

$$
\operatorname{Pr}(Y=y)=(1-\theta)^{y-1} \theta
$$

The pmf of Y is then

$$
f_{\theta}(y)=(1-\theta)^{y-1} \theta, \quad \text { for } y=1,2,3, \ldots
$$

and $f_{\theta}(y)=0$ when y does not equal $1,2,3, \ldots$
(c) We know that

$$
\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}, \quad \text { and } \quad \sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}
$$

provided $x \neq 1$ and $|x|<1$, respectively. To show that $f_{\theta}(y)$ is a pmf we must show that $f_{\theta}(y) \geq 0$ for all y, and that is sums to one. Since $0 \leq \theta \leq 1, f_{\theta}(y)$ is non-negative. For the second,

$$
\begin{aligned}
\sum_{y=1}^{\infty}(1-\theta)^{y-1} \theta & =\frac{\theta}{1-\theta} \sum_{y=1}^{\infty}(1-\theta)^{y}=\frac{\theta}{1-\theta}\left\{\sum_{y=0}^{\infty}(1-\theta)^{y}-1\right\} \\
& =\frac{\theta}{1-\theta}\left\{\frac{1}{\theta}-1\right\}=\frac{\theta}{1-\theta} \frac{1-\theta}{\theta}=1
\end{aligned}
$$

(d) Here we show that $\mathrm{E} Y=\sum_{y=1}^{\infty} y f(y)=1 / \theta$. It is important for what follows that since $0<\theta<1$, then $0<1-\theta<1$.

$$
\mathrm{E}[Y]=\sum_{y=1}^{\infty} y f(y)=\sum_{y=1}^{\infty} y(1-\theta)^{y-1} \theta=\frac{\theta}{1-\theta} \sum_{y=1}^{\infty} y(1-\theta)^{y}
$$

Let us therefore look at $\sum_{y=1}^{\infty} y(1-\theta)^{y}$. For this sum we'll use the result from Ex. 1(c), generalised to infinite sums,

$$
\begin{aligned}
\sum_{y=1}^{\infty} y(1-\theta)^{y} & =\sum_{k=1}^{\infty} \sum_{y=k}^{\infty}(1-\theta)^{y}=\sum_{k=1}^{\infty}\left\{\sum_{y=1}^{\infty}(1-\theta)^{y}-\sum_{y=1}^{k-1}(1-\theta)^{y}\right\} \\
& =\sum_{k=1}^{\infty}\left\{\sum_{y=0}^{\infty}(1-\theta)^{y}-\sum_{y=0}^{k-1}(1-\theta)^{y}\right\} \\
& =\sum_{k=1}^{\infty}\left\{\frac{1}{\theta}-\frac{1-(1-\theta)^{k}}{\theta}\right\}=\sum_{k=1}^{\infty} \frac{(1-\theta)^{k}}{\theta}=\frac{1}{\theta} \sum_{k=1}^{\infty}(1-\theta)^{k} \\
& =\frac{1}{\theta}\left\{\sum_{k=0}^{\infty}(1-\theta)^{k}-1\right\}=\frac{1}{\theta}\left\{\frac{1}{\theta}-1\right\}=\frac{1-\theta}{\theta^{2}}
\end{aligned}
$$

This shows that

$$
\frac{1-\theta}{\theta} \mathrm{E}[Y]=\frac{1-\theta}{\theta^{2}}
$$

and therefore $\mathrm{E}[Y]=1 / \theta$.
(e) We have independent Y_{1}, \ldots, Y_{n} from $f_{\theta}(y)$. First

$$
\log f_{\theta}(y)=\log \left\{(1-\theta)^{y-1} \theta\right\}=(y-1) \log (1-\theta)+\log \theta
$$

and the log-likelihood function is

$$
\ell_{n}(\theta)=\sum_{i=1}^{n} \log f_{\theta}\left(Y_{i}\right)=\log (1-\theta) \sum_{i=1}^{n}\left(Y_{i}-1\right)+n \log \theta=\log (1-\theta) n\left(\bar{Y}_{n}-1\right)+n \log \theta
$$

(f) Find the first derivative of $\ell_{n}(\theta)$, set it equal to zero,

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \ell_{n}(\theta)=-\frac{n\left(\bar{Y}_{n}-1\right)}{1-\theta}+\frac{n}{\theta}=0
$$

Solve for θ to find the MLE, it is $\widehat{\theta}_{n}=1 / \bar{Y}_{n}$.
(g) Show that $\widehat{\theta}_{n} \rightarrow_{p} \theta$, i.e. that $\widehat{\theta}_{n}$ is consistent for θ. Note first that

$$
\operatorname{Var}\left(\bar{Y}_{n}\right)=\frac{1-\theta}{n \theta^{2}}
$$

which is finite, so the Law of large numbers (LLN) applies. Can argue in two ways: (1) $\bar{Y}_{n} \rightarrow_{p} 1 / \theta$ by the LLN, and $g(x)=1 / x$ is a continuous function (except at $x=0$). We know that if $X_{n} \rightarrow_{p} a$, and $h(x)$ is a continuous function, then $h\left(X_{n}\right) \rightarrow_{p} h(a)$ (see notes from Lecture 5, and Wooldridge (2019, Property PLIM.1, p. 722)). Thus,

$$
\widehat{\theta}_{n}=g\left(\bar{Y}_{n}\right) \xrightarrow{p} g(1 / \theta)=\frac{1}{1 / \theta}=\theta .
$$

If we did not know about Property PLIM.1, but only knew Chebyshev's inequality as presented in Lecture 4 (Lemma 4.2 in the machine written lecture notes), we could argue as follows. Since $Y_{i} \geq 1$ for all i, the empirical mean $\bar{Y}_{n} \geq 1$. Then,

$$
\left|\widehat{\theta}_{n}-\theta\right|=\frac{\left|1-\theta \bar{Y}_{n}\right|}{\left|\bar{Y}_{n}\right|} \leq\left|1-\theta \bar{Y}_{n}\right|
$$

and we must therefore have the following inclusion of events: for any $\varepsilon>0$,

$$
\left\{\left|\widehat{\theta}_{n}-\theta\right| \geq \varepsilon\right\} \subset\left\{\left|1-\theta \bar{Y}_{n}\right| \geq \varepsilon\right\}
$$

Now, $\mathrm{E}\left[\theta \bar{Y}_{n}\right]=1$ and $\operatorname{Var}\left(\theta \bar{Y}_{n}\right)=(1-\theta) / n$, so

$$
\operatorname{Pr}\left(\left|\widehat{\theta}_{n}-\theta\right| \geq \varepsilon\right) \leq \operatorname{Pr}\left(\left|1-\theta \bar{Y}_{n}\right| \geq \varepsilon\right) \leq \frac{1-\theta}{\varepsilon^{2} n}
$$

where the second inequality comes from Chebyshev's inequality. The right hand side tends to zero as $n \rightarrow \infty$, which shows that $\widehat{\theta}_{n}$ is consistent for θ.

Solutions to Ex. 3. Let Y_{1}, \ldots, Y_{n} be independent random variables; and let x_{1}, \ldots, x_{n} be some numbers, at least one of which does not equal zero. Assume that $Y_{i} \sim \mathrm{~N}\left(\theta x_{i}, \sigma^{2}\right)$ for $i=1, \ldots, n$. That is, the density of the i th random variable Y_{i} is

$$
f_{i}\left(y ; \theta, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y-\theta x_{i}\right)^{2}\right\}
$$

where $\sigma>0$ and $\theta \in \mathbb{R}$. In this exercise we will study the maximum likelihood estimators of θ and σ^{2}.
(a) The logarithm of the i th density is

$$
\log f_{i}\left(y ; \theta, \sigma^{2}\right)=-\frac{1}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}}\left(y-\theta x_{i}\right)^{2}-\log \sqrt{2 \pi}
$$

using that $(1 / 2) \log \sigma^{2}=\log \sigma$. Then

$$
\ell_{n}\left(\theta, \sigma^{2}\right)=\sum_{i=1}^{n} \log f_{i}\left(Y_{i} ; \theta, \sigma^{2}\right)=-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\theta x_{i}\right)^{2}-n \log \sqrt{2 \pi}
$$

and using the chain rule for differentiation, we get

$$
\frac{\partial}{\partial \theta} \ell_{n}\left(\theta, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\theta x_{i}\right) x_{i}
$$

The expectation of $\partial \ell\left(\theta, \sigma^{2}\right) / \partial \theta$ is

$$
\mathrm{E} \frac{\partial}{\partial \theta} \ell_{n}\left(\theta, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(\mathrm{E}\left[Y_{i}\right]-\theta x_{i}\right) x_{i}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(\theta x_{i}-\theta x_{i}\right) x_{i}=0
$$

(b) Set $\partial \ell\left(\theta, \sigma^{2}\right) / \partial \theta=0$ and solve for θ,

$$
\frac{1}{\sigma^{2}} \sum_{i=1}^{n} Y_{i} x_{i}-\theta \frac{1}{\sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}=0
$$

so the MLE is

$$
\widehat{\theta}_{n}=\frac{\sum_{i=1}^{n} Y_{i} x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

Define

$$
a_{i}=\frac{x_{i}}{\sum_{j=1}^{n} x_{j}^{2}}, \quad \text { for } i=1, \ldots, n
$$

then

$$
\widehat{\theta}_{n}=\frac{\sum_{i=1}^{n} Y_{i} x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}=\sum_{i=1}^{n} a_{i} Y_{i}
$$

and we see that we can use Prop. 2.3 in the Lecture notes,

$$
E\left[\widehat{\theta}_{n}\right]=\sum_{i=1}^{n} a_{i} \mathrm{E}\left[Y_{i}\right]=\sum_{i=1}^{n} a_{i} x_{i} \theta=\theta \sum_{i=1}^{n} a_{i} x_{i}=\theta \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sum_{j=1}^{n} x_{i}^{2}}=\theta
$$

which shows that $\widehat{\theta}_{n}$ is unbiased for θ.
(c) Similarly, due to the independence of Y_{1}, \ldots, Y_{n} (see HW2 Ex. 3(f)),

$$
\operatorname{Var}\left(\widehat{\theta}_{n}\right)=\sum_{i=1}^{n} a_{i}^{2} \sigma^{2}=\sigma^{2} \sum_{i=1}^{n} a_{i}^{2}=\sigma^{2} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{2}}=\frac{\sigma^{2}}{\sum_{j=1}^{n} x_{j}^{2}}
$$

(d) Suppose that $\sum_{i=1}^{n} x_{i} \rightarrow \infty$ as $n \rightarrow \infty$, then for any $\varepsilon>0$,

$$
\operatorname{Pr}\left(\left|\widehat{\theta}_{n}-\theta\right| \geq \varepsilon\right) \leq \frac{\widehat{\theta}_{n}}{\varepsilon^{2}}=\frac{\sigma^{2}}{\varepsilon^{2} \sum_{j=1}^{n} x_{j}^{2}} \rightarrow 0
$$

as $n \rightarrow \infty$. This shows that $\widehat{\theta}_{n} \rightarrow \theta$, i.e. $\widehat{\theta}_{n}$ is consistent for θ.
(e) Differentiate $\ell_{n}\left(\theta, \sigma^{2}\right)$ with respect to σ^{2},

$$
\frac{\partial}{\partial \sigma^{2}} \ell_{n}\left(\theta, \sigma^{2}\right)=-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(Y_{i}-\theta x_{i}\right)^{2}
$$

Setting $\partial \ell_{n}\left(\theta, \sigma^{2}\right) / \partial \sigma^{2}=0$, solving for σ^{2}, and inserting the estimator for θ, yields the MLE,

$$
\widehat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{\theta}_{n} x_{i}\right)^{2}
$$

(f) Recall that $\partial \ell_{n}\left(\theta, \sigma^{2}\right) / \partial \theta=\sum_{i=1}^{n}\left(Y_{i}-\theta x_{i}\right) x_{i}$ evaluated in $\widehat{\theta}_{n}$ equals zero, that is $\partial \ell_{n}\left(\widehat{\theta}_{n}, \sigma^{2}\right) / \partial \theta=0$ (some people prefer $\partial \ell_{n}\left(\theta, \sigma^{2}\right) /\left.\partial \theta\right|_{\theta=\widehat{\theta}_{n}}=0$, or the like)

$$
\begin{aligned}
\widehat{\sigma}_{n}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{\theta}_{n} x_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\theta x_{i}+\theta x_{i}-\widehat{\theta}_{n} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\{\left(Y_{i}-\theta x_{i}\right)^{2}+\left(\widehat{\theta}_{n}-\theta\right)^{2} x_{i}^{2}-2\left(Y_{i}-\theta x_{i}\right)\left(\widehat{\theta}_{n}-\theta\right) x_{i}\right\} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\{\left(Y_{i}-\theta x_{i}\right)^{2}+\left(\widehat{\theta}_{n}-\theta\right)^{2} x_{i}^{2}-2\left(Y_{i}-\widehat{\theta}_{n} x_{i}+\widehat{\theta}_{n} x_{i}-\theta x_{i}\right)\left(\widehat{\theta}_{n}-\theta\right) x_{i}\right\} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\{\left(Y_{i}-\theta x_{i}\right)^{2}+\left(\widehat{\theta}_{n}-\theta\right)^{2} x_{i}^{2}-2\left(\widehat{\theta}_{n}-\theta\right)^{2} x_{i}^{2}\right\}-\frac{2\left(\widehat{\theta}_{n}-\theta\right)}{n} \frac{\partial}{\partial \theta} \ell_{n}\left(\widehat{\theta}_{n}, \sigma^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left\{\left(Y_{i}-\theta x_{i}\right)^{2}-\left(\widehat{\theta}_{n}-\theta\right)^{2} x_{i}^{2}\right\}=\frac{\sigma^{2}}{n}\left\{\sum_{i=1}^{n} \frac{\left(Y_{i}-\theta x_{i}\right)^{2}}{\sigma^{2}}-\frac{\left(\widehat{\theta}_{n}-\theta\right)^{2}}{\sigma^{2} / \sum_{i=1}^{n} x_{i}^{2}}\right\} \\
& =\frac{\sigma^{2}}{n}\left\{\sum_{i=1}^{n} \frac{\left(Y_{i}-\theta x_{i}\right)^{2}}{\sigma^{2}}-\frac{\left(\widehat{\theta}_{n}-\theta\right)^{2}}{\operatorname{Var}\left(\widehat{\theta}_{n}\right)}\right\} .
\end{aligned}
$$

We can now use Proposition 2.3 in the Lecture notes to find the expectation of $\widehat{\sigma}_{n}^{2}$, but first

$$
\mathrm{E} \frac{\left(Y_{i}-\theta x_{i}\right)^{2}}{\sigma^{2}}=\frac{1}{\sigma^{2}} \mathrm{E}\left(Y_{i}-\theta x_{i}\right)^{2}=\frac{1}{\sigma^{2}} \operatorname{Var}\left(Y_{i}\right)=1
$$

and

$$
\mathrm{E} \frac{\left(\widehat{\theta}_{n}-\theta\right)^{2}}{\operatorname{Var}\left(\hat{\theta}_{n}\right)}=\frac{1}{\operatorname{Var}\left(\hat{\theta}_{n}\right)} \mathrm{E}\left(\widehat{\theta}_{n}-\theta\right)^{2}=\frac{1}{\operatorname{Var}\left(\hat{\theta}_{n}\right)} \operatorname{Var}\left(\widehat{\theta}_{n}\right)=1
$$

Then

$$
\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]=\frac{\sigma^{2}}{n}\left(\sum_{i=1}^{n} \mathrm{E}\left\{\frac{\left(Y_{i}-\theta x_{i}\right)^{2}}{\sigma^{2}}\right\}-\mathrm{E}\left\{\frac{\left(\widehat{\theta}_{n}-\theta\right)^{2}}{\operatorname{Var}\left(\widehat{\theta}_{n}\right)}\right)\right\}=\frac{\sigma^{2}}{n}(n-1)
$$

(g) Since $\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]=(n-1) \sigma^{2} / n$, we see that $\widehat{\sigma}_{n}^{2}$ is a biased estimator for σ^{2}. To show that $\widehat{\sigma}_{n}^{2} \rightarrow_{p} \sigma^{2}$ we use Property PLIM. 2 in Wooldridge (2019, p. 724). First

$$
\widehat{\sigma}_{n}^{2}-\sigma^{2}==\left(\widehat{\sigma}_{n}^{2}-\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]\right)+\left(\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]-\sigma^{2}\right)=\left(\widehat{\sigma}_{n}^{2}-\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]\right)+\left(\frac{n-1}{n} \sigma^{2}-\sigma^{2}\right)
$$

here $\left((n-1) / n \sigma^{2}-\sigma^{2}\right)=-\sigma^{2} / n$ is a deterministic sequence that tends to zero, so it also tends to zero in probability. Second, using PLIM.2(i), we only need to show that $\widehat{\sigma}_{n}^{2}-\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right] \rightarrow_{p} 0$: By Chebyshev's inequality, for any $\varepsilon>0$,

$$
\operatorname{Pr}\left(\left|\widehat{\sigma}_{n}^{2}-\mathrm{E}\left[\widehat{\sigma}_{n}^{2}\right]\right| \geq \varepsilon\right) \leq \frac{\operatorname{Var}\left(\widehat{\sigma}_{n}^{2}\right)}{\varepsilon^{2}}=\frac{2(n-1) \sigma^{4}}{\varepsilon^{2} n^{2}} \rightarrow 0
$$

as $n \rightarrow \infty$, and we conclude that $\widehat{\sigma}_{n}^{2} \rightarrow_{p} \sigma^{2}$, in other words $\widehat{\sigma}_{n}^{2}$ is consistent for σ^{2}.
(h) The complete Matlab code for (h)-(k) is given below.
(i) The estimates, based on the data in hw4_data.txt, are

Parameter	Estimate
θ	4.5896
σ^{2}	2.1719
$\left\{\operatorname{Var}\left(\widehat{\theta}_{n}\right)\right\}^{1 / 2}$	0.2534

(j) We are told that

$$
\frac{\widehat{\theta}_{n}-\theta}{\operatorname{se}\left(\widehat{\theta}_{n}\right)} \sim \mathrm{N}(0,1)
$$

and that $\operatorname{Pr}(-1.96 \leq Z \leq 1.96)=0.95$ when $Z \sim \mathrm{~N}(0,1)$. A 95% confidence interval for θ is found by isolating θ

$$
\begin{aligned}
\left\{-1.96 \leq \frac{\widehat{\theta}_{n}-\theta}{\operatorname{se}\left(\widehat{\theta}_{n}\right)} \leq 1.96\right\} & =\left\{-1.96 \operatorname{se}\left(\widehat{\theta}_{n}\right) \leq \widehat{\theta}_{n}-\theta \leq 1.96 \mathrm{se}\left(\widehat{\theta}_{n}\right)\right\} \\
& =\left\{-\widehat{\theta}_{n}-1.96 \mathrm{se}\left(\widehat{\theta}_{n}\right) \leq-\theta \leq-\widehat{\theta}_{n}+1.96 \mathrm{se}\left(\widehat{\theta}_{n}\right)\right\} \\
& =\left\{\widehat{\theta}_{n}-1.96 \mathrm{se}\left(\widehat{\theta}_{n}\right) \leq \theta \leq \widehat{\theta}_{n}+1.96 \mathrm{se}\left(\widehat{\theta}_{n}\right)\right\}
\end{aligned}
$$

so that

$$
\operatorname{Pr}\left\{\widehat{\theta}_{n}-1.96 \operatorname{se}\left(\widehat{\theta}_{n}\right) \leq \theta \leq \widehat{\theta}_{n}+1.96 \operatorname{se}\left(\widehat{\theta}_{n}\right)\right\}=0.95
$$

Therefore

$$
\left[\widehat{\theta}_{n}-1.96 \mathrm{se}\left(\widehat{\theta}_{n}\right), \widehat{\theta}_{n}+1.96 \mathrm{se}\left(\widehat{\theta}_{n}\right)\right]
$$

Figure 1. A scatter plot of the pairs of $\left(x_{i}, Y_{i}\right)$ for $i=1, \ldots, n$ found in hw4_data.txt, with the fitted line $\widehat{g}_{n}(x)=\widehat{\theta}_{n} x$ overlaid.
is a random interval that will contain θ with 95% probability. It is what is called a 95% confidence interval. A realisation of this interval based on the data in hw4_data.txt is

$$
[4.09,5.09] .
$$

(k) The plot is in Figure 1, and here is the Matlab code

```
cd("~/your_path/");
```

data $=$ readmatrix("hw4_data.txt");
$\mathrm{x}=\operatorname{data}(:, 1)$;
$\mathrm{y}=\operatorname{data}(:, 2)$;
thetahat $=\operatorname{sum}(\mathrm{x} . * \mathrm{y}) / \operatorname{sum}\left(\mathrm{x} .{ }^{\wedge} 2\right)$;
sigma2hat $=$ mean ($\left(y-\right.$ hat.*x). $\left.{ }^{\wedge} 2\right)$;
se_thetahat $=\operatorname{sqrt}\left(\right.$ sigma2hat/sum (x. $\left.\left.{ }^{\wedge} 2\right)\right)$;
\% A 95 prct confidence interval
thetahat - 1.96*se_thetahat
thetahat + 1.96*se_thetahat
scatter (x, y)
line(x,thetahat.*x, "Linewidth", 2, "Color", "b");
saveas(gcf,"~/your_path/hw4scatter.eps", "epsc");

References

Wooldridge, J. M. (2019). Introductory Econometrics: A Modern Approach. Seventh Edition. Cengage Learning, Boston, MA.

Department of Economics, BI Norwegian Business School
Email address: emil.a.stoltenberg@bi.no

