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Solutions to Ex. 1. Let X1, . . . , Xn be random variables, numbers, observations.

(a) Let’s try with n = 4, then

3∑
i=1

(Xi+1 −Xi) = X2 −X1 +X3 −X2 +X4 −X3 = X4 −X1.

(b) Let ai =
∑3

j=iXj for i = 1, 2, 3. Then

3∑
i=1

ai = a1 + a2 + a3 =

3∑
j=1

Xj +

3∑
j=2

Xj +

3∑
j=3

Xj

= (X1 +X2 +X3) + (X2 +X3) +X3 = X1 + 2X2 + 3X3.

(c) Generalise what you found in (b). Or

n∑
i=1

iXi = 1X1 + 2X2 + 3X3 + 4X4 · · ·+ nXn

=

n∑
i=1

Xi + {X2 + 2X3 + 3X4 · · ·+ (n− 1)Xn}

=

n∑
i=1

Xi +

n∑
i=2

Xi + {X3 + 2X4 · · ·+ (n− 2)Xn}

=

n∑
i=1

Xi +

n∑
i=2

Xi + · · ·+ +

n∑
i=n−1

Xi +

n∑
i=n

Xi

=

n∑
j=1

n∑
i=j

Xi.
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Solutions to Ex. 2. Let X1, . . . , Xn an Y1, . . . , Ym be random variables, and define the

random variables Z1, . . . , Zn+m as follows,

Z1 = X1, . . . , Zn = Xn, Zn+1 = Y1, . . . , Zn+m = Ym.

(a)

Z̄n+m =
1

n+m

n+m∑
i=1

Zi =
1

n+m
(

n∑
i=1

Xi +

m∑
i=1

Yi)

=
1

n+m
(nX̄n +mȲm) =

n

n+m
X̄n +

m

n+m
Ȳm.

in terms of X̄n and Ȳm. (b) When n = m,

1

2
(X̄n + Ȳm) = Z̄n+m.

(c) Let a be some constant, then

n∑
i=1

(Xi − a)2 =

n∑
i=1

(Xi − X̄n + X̄n − a)2

=

n∑
i=1

(Xi − X̄n)2 + 2(X̄n − a)

n∑
i=1

(Xi − X̄n) + n(X̄n − a)2

= (n− 1)s2X + n(X̄n − a)2,

because
∑n

i=1(Xi − X̄n) = 0 and (n− 1)s2X =
∑n

i=1(Xi − X̄n)2.

(d) Look at

(n+m− 1)s2Z =

n+m∑
i=1

(Zi − Z̄n+m)2 =

n∑
i=1

(Xi − Z̄n+m)2 +

m∑
i=1

(Yi − Z̄n+m)2.

It suffices to only look at one of the sums on the right. Use what we found in (c), with

Z̄n+m playing the role of a,

n∑
i=1

(Xi − Z̄n+m)2 =
n∑
i=1

(Xi − X̄n + X̄n − Z̄n+m)2 = (n− 1)s2X + n(X̄n − Z̄n+m)2

= (n− 1)s2X + n
(
X̄n −

n

n+m
X̄n +

m

n+m
Ȳm
)2

= (n− 1)s2X +
nm2

(n+m)2
(X̄n − Ȳm)2,

from which we see that
m∑
i=1

(Yi − Z̄n+m)2 = (m− 1)s2Y +
mn2

(n+m)2
(X̄n − Ȳm)2.

Some algebra, e.g. nm2 +mn2 = nm(n+m), then gives,

(n+m− 1)s2Z = (n− 1)s2X + (m− 1)s2Y +
nm

(n+m)
(X̄n − Ȳm)2.

(e) Run and understand the Matlab code.
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Solutions to Ex. 3. Suppose you have a coin whose probability of showing heads equals

θ (some unknown parameter). We represent one toss of this coin by the random variable

X =

{
0, if tails,

1, if heads,

which means that

Pr(X = 1) = θ.

We decide to toss this coin until we get a heads up, then stop. By so deciding, we can

define a new random variable,

Y = the numbers of tosses until we get heads up,

so that Y takes its values in {1, 2, 3, . . .}. For example, if we toss tails, tails, heads, then

Y = 3.

(a) We tacitly understand that the tosses are independent, and we can represent the

ith toss by the rv Xi, so that Pr(Xi = 1) = θ. The few first

Pr(Y = 1) = Pr(X1 = 1) = θ,

Pr(Y = 2) = Pr(X1 = 0)Pr(X2 = 1) = (1− θ)θ,

Pr(Y = 3) = Pr(X1 = 0)Pr(X2 = 0)Pr(X3 = 1) = (1− θ)2θ,

Pr(Y = 4) = Pr(X1 = 0)Pr(X2 = 0)Pr(X3 = 0)Pr(X4 = 1) = (1− θ)3θ,

(b) from which we see a pattern, namely that

Pr(Y = y) = (1− θ)y−1θ.

The pmf of Y is then

fθ(y) = (1− θ)y−1θ, for y = 1, 2, 3, . . . ,

and fθ(y) = 0 when y does not equal 1, 2, 3, . . ..

(c) We know that
n∑
k=0

xk =
1− xn+1

1− x
, and

∞∑
k=0

xk =
1

1− x
,

provided x 6= 1 and |x|< 1, respectively. To show that fθ(y) is a pmf we must show that

fθ(y) ≥ 0 for all y, and that is sums to one. Since 0 ≤ θ ≤ 1, fθ(y) is non-negative. For

the second,
∞∑
y=1

(1− θ)y−1θ =
θ

1− θ

∞∑
y=1

(1− θ)y =
θ

1− θ
{ ∞∑
y=0

(1− θ)y − 1
}

=
θ

1− θ
{1

θ
− 1
}

=
θ

1− θ
1− θ
θ

= 1.

(d) Here we show that EY =
∑∞

y=1 yf(y) = 1/θ. It is important for what follows that

since 0 < θ < 1, then 0 < 1− θ < 1.

E [Y ] =

∞∑
y=1

yf(y) =

∞∑
y=1

y(1− θ)y−1θ =
θ

1− θ

∞∑
y=1

y(1− θ)y,
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Let us therefore look at
∑∞

y=1 y(1 − θ)y. For this sum we’ll use the result from Ex. 1(c),

generalised to infinite sums,

∞∑
y=1

y(1− θ)y =
∞∑
k=1

∞∑
y=k

(1− θ)y =
∞∑
k=1

{ ∞∑
y=1

(1− θ)y −
k−1∑
y=1

(1− θ)y
}

=
∞∑
k=1

{ ∞∑
y=0

(1− θ)y −
k−1∑
y=0

(1− θ)y
}

=
∞∑
k=1

{1

θ
− 1− (1− θ)k

θ

}
=
∞∑
k=1

(1− θ)k

θ
=

1

θ

∞∑
k=1

(1− θ)k

=
1

θ

{ ∞∑
k=0

(1− θ)k − 1} =
1

θ

{1

θ
− 1} =

1− θ
θ2

.

This shows that
1− θ
θ

E [Y ] =
1− θ
θ2

,

and therefore E [Y ] = 1/θ.

(e) We have independent Y1, . . . , Yn from fθ(y). First

log fθ(y) = log{(1− θ)y−1θ} = (y − 1) log(1− θ) + log θ,

and the log-likelihood function is

`n(θ) =
n∑
i=1

log fθ(Yi) = log(1− θ)
n∑
i=1

(Yi − 1) + n log θ = log(1− θ)n(Ȳn − 1) + n log θ.

(f) Find the first derivative of `n(θ), set it equal to zero,

d

dθ
`n(θ) = −n(Ȳn − 1)

1− θ
+
n

θ
= 0.

Solve for θ to find the MLE, it is θ̂n = 1/Ȳn.

(g) Show that θ̂n →p θ, i.e. that θ̂n is consistent for θ. Note first that

Var(Ȳn) =
1− θ
nθ2

,

which is finite, so the Law of large numbers (LLN) applies. Can argue in two ways: (1)

Ȳn →p 1/θ by the LLN, and g(x) = 1/x is a continuous function (except at x = 0). We

know that if Xn →p a, and h(x) is a continuous function, then h(Xn)→p h(a) (see notes

from Lecture 5, and Wooldridge (2019, Property PLIM.1, p. 722)). Thus,

θ̂n = g(Ȳn)
p→ g(1/θ) =

1

1/θ
= θ.

If we did not know about Property PLIM.1, but only knew Chebyshev’s inequality as

presented in Lecture 4 (Lemma 4.2 in the machine written lecture notes), we could argue

as follows. Since Yi ≥ 1 for all i, the empirical mean Ȳn ≥ 1. Then,

|θ̂n − θ|=
|1− θȲn|
|Ȳn|

≤ |1− θȲn|,
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and we must therefore have the following inclusion of events: for any ε > 0,

{|θ̂n − θ|≥ ε} ⊂ {|1− θȲn|≥ ε},

Now, E [θȲn] = 1 and Var(θȲn) = (1− θ)/n, so

Pr(|θ̂n − θ|≥ ε) ≤ Pr(|1− θȲn|≥ ε) ≤
1− θ
ε2n

,

where the second inequality comes from Chebyshev’s inequality. The right hand side tends

to zero as n→∞, which shows that θ̂n is consistent for θ.

Solutions to Ex. 3. Let Y1, . . . , Yn be independent random variables; and let x1, . . . , xn
be some numbers, at least one of which does not equal zero. Assume that Yi ∼ N(θxi, σ

2)

for i = 1, . . . , n. That is, the density of the ith random variable Yi is

fi(y; θ, σ2) =
1√
2πσ

exp
{
− 1

2σ2
(y − θxi)2

}
,

where σ > 0 and θ ∈ R. In this exercise we will study the maximum likelihood estimators

of θ and σ2.

(a) The logarithm of the ith density is

log fi(y; θ, σ2) = −1

2
log σ2 − 1

2σ2
(y − θxi)2 − log

√
2π,

using that (1/2) log σ2 = log σ. Then

`n(θ, σ2) =

n∑
i=1

log fi(Yi; θ, σ
2) = −n

2
log σ2 − 1

2σ2

n∑
i=1

(Yi − θxi)2 − n log
√

2π,

and using the chain rule for differentiation, we get

∂

∂θ
`n(θ, σ2) =

1

σ2

n∑
i=1

(Yi − θxi)xi.

The expectation of ∂`(θ, σ2)/∂θ is

E
∂

∂θ
`n(θ, σ2) =

1

σ2

n∑
i=1

(E [Yi]− θxi)xi =
1

σ2

n∑
i=1

(θxi − θxi)xi = 0.

(b) Set ∂`(θ, σ2)/∂θ = 0 and solve for θ,

1

σ2

n∑
i=1

Yixi − θ
1

σ2

n∑
i=1

x2i = 0,

so the MLE is

θ̂n =

∑n
i=1 Yixi∑n
i=1 x

2
i

.

Define

ai =
xi∑n
j=1 x

2
j

, for i = 1, . . . , n,

then

θ̂n =

∑n
i=1 Yixi∑n
i=1 x

2
i

=

n∑
i=1

aiYi,
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and we see that we can use Prop. 2.3 in the Lecture notes,

E [θ̂n] =

n∑
i=1

aiE [Yi] =

n∑
i=1

aixiθ = θ

n∑
i=1

aixi = θ

n∑
i=1

x2i∑n
j=1 x

2
i

= θ,

which shows that θ̂n is unbiased for θ.

(c) Similarly, due to the independence of Y1, . . . , Yn (see HW2 Ex. 3(f)),

Var(θ̂n) =
n∑
i=1

a2iσ
2 = σ2

n∑
i=1

a2i = σ2
n∑
i=1

x2i
(
∑n

j=1 x
2
j )

2
=

σ2∑n
j=1 x

2
j

.

(d) Suppose that
∑n

i=1 xi →∞ as n→∞, then for any ε > 0,

Pr(|θ̂n − θ|≥ ε) ≤
θ̂n
ε2

=
σ2

ε2
∑n

j=1 x
2
j

→ 0,

as n→∞. This shows that θ̂n → θ, i.e. θ̂n is consistent for θ.

(e) Differentiate `n(θ, σ2) with respect to σ2,

∂

∂σ2
`n(θ, σ2) = − n

2σ2
+

1

2σ4

n∑
i=1

(Yi − θxi)2.

Setting ∂`n(θ, σ2)/∂σ2 = 0, solving for σ2, and inserting the estimator for θ, yields the

MLE,

σ̂2n =
1

n

n∑
i=1

(Yi − θ̂nxi)2.

(f) Recall that ∂`n(θ, σ2)/∂θ =
∑n

i=1(Yi − θxi)xi evaluated in θ̂n equals zero, that is

∂`n(θ̂n, σ
2)/∂θ = 0 (some people prefer ∂`n(θ, σ2)/∂θ

∣∣
θ=θ̂n

= 0, or the like)

σ̂2n =
1

n

n∑
i=1

(Yi − θ̂nxi)2 =
1

n

n∑
i=1

(Yi − θxi + θxi − θ̂nxi)2

=
1

n

n∑
i=1

{
(Yi − θxi)2 + (θ̂n − θ)2x2i − 2(Yi − θxi)(θ̂n − θ)xi

}
=

1

n

n∑
i=1

{
(Yi − θxi)2 + (θ̂n − θ)2x2i − 2(Yi − θ̂nxi + θ̂nxi − θxi)(θ̂n − θ)xi

}
=

1

n

n∑
i=1

{
(Yi − θxi)2 + (θ̂n − θ)2x2i − 2(θ̂n − θ)2x2i

}
− 2(θ̂n − θ)

n

∂

∂θ
`n(θ̂n, σ

2)

=
1

n

n∑
i=1

{
(Yi − θxi)2 − (θ̂n − θ)2x2i

}
=
σ2

n

{ n∑
i=1

(Yi − θxi)2

σ2
− (θ̂n − θ)2

σ2/
∑n

i=1 x
2
i

}
=
σ2

n

{ n∑
i=1

(Yi − θxi)2

σ2
− (θ̂n − θ)2

Var(θ̂n)

}
.
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We can now use Proposition 2.3 in the Lecture notes to find the expectation of σ̂2n, but

first

E
(Yi − θxi)2

σ2
=

1

σ2
E (Yi − θxi)2 =

1

σ2
Var(Yi) = 1,

and

E
(θ̂n − θ)2

Var(θ̂n)
=

1

Var(θ̂n)
E (θ̂n − θ)2 =

1

Var(θ̂n)
Var(θ̂n) = 1.

Then

E [σ̂2n] =
σ2

n

( n∑
i=1

E
{(Yi − θxi)2

σ2
}
− E

{(θ̂n − θ)2

Var(θ̂n)

)}
=
σ2

n
(n− 1).

(g) Since E [σ̂2n] = (n− 1)σ2/n, we see that σ̂2n is a biased estimator for σ2. To show that

σ̂2n →p σ
2 we use Property PLIM.2 in Wooldridge (2019, p. 724). First

σ̂2n − σ2 == (σ̂2n − E [σ̂2n]) + (E [σ̂2n]− σ2) = (σ̂2n − E [σ̂2n]) + (
n− 1

n
σ2 − σ2),

here ((n − 1)/nσ2 − σ2) = −σ2/n is a deterministic sequence that tends to zero, so it

also tends to zero in probability. Second, using PLIM.2(i), we only need to show that

σ̂2n − E [σ̂2n]→p 0: By Chebyshev’s inequality, for any ε > 0,

Pr(|σ̂2n − E [σ̂2n]|≥ ε) ≤ Var(σ̂2n)

ε2
=

2(n− 1)σ4

ε2n2
→ 0,

as n→∞, and we conclude that σ̂2n →p σ
2, in other words σ̂2n is consistent for σ2.

(h) The complete Matlab code for (h)–(k) is given below.

(i) The estimates, based on the data in hw4 data.txt, are

Parameter Estimate

θ 4.5896

σ2 2.1719

{Var(θ̂n)}1/2 0.2534

(j) We are told that

θ̂n − θ
se(θ̂n)

∼ N(0, 1),

and that Pr(−1.96 ≤ Z ≤ 1.96) = 0.95 when Z ∼ N(0, 1). A 95% confidence interval for

θ is found by isolating θ

{−1.96 ≤ θ̂n − θ
se(θ̂n)

≤ 1.96} = {−1.96 se(θ̂n) ≤ θ̂n − θ ≤ 1.96 se(θ̂n)}

= {−θ̂n − 1.96 se(θ̂n) ≤ −θ ≤ −θ̂n + 1.96 se(θ̂n)}

= {θ̂n − 1.96 se(θ̂n) ≤ θ ≤ θ̂n + 1.96 se(θ̂n)},

so that

Pr{θ̂n − 1.96 se(θ̂n) ≤ θ ≤ θ̂n + 1.96 se(θ̂n)} = 0.95.

Therefore

[θ̂n − 1.96 se(θ̂n), θ̂n + 1.96 se(θ̂n)],



8 STOLTENBERG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

0

2

4

6

8

10

Figure 1. A scatter plot of the pairs of (xi, Yi) for i = 1, . . . , n found in

hw4 data.txt, with the fitted line ĝn(x) = θ̂nx overlaid.

is a random interval that will contain θ with 95% probability. It is what is called a 95%

confidence interval. A realisation of this interval based on the data in hw4 data.txt is

[4.09, 5.09].

(k) The plot is in Figure 1, and here is the Matlab code

cd("~/your_path/");

data = readmatrix("hw4_data.txt");

x = data(:,1);

y = data(:,2);

thetahat = sum(x.*y)/sum(x.^2);

sigma2hat = mean((y - hat.*x).^2);

se_thetahat = sqrt(sigma2hat/sum(x.^2));

% A 95 prct confidence interval

thetahat - 1.96*se_thetahat

thetahat + 1.96*se_thetahat

scatter(x,y)

line(x,thetahat.*x,"Linewidth",2,"Color","b");

saveas(gcf,"~/your_path/hw4scatter.eps","epsc");
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