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GRA6039 ECONOMETRICS WITH PROGRAMMING
AUTUMN 2020

EMIL A. STOLTENBERG

Solutions to Ex. 1. Let Xq,...,X,, be random variables, numbers, observations.
(a) Let’s try with n = 4, then

3
Z(XiJrl_Xi) =Xo— X1+ X3 - Xo+ Xy — X3=Xy - Xy.
i=1

(b) Let a; = Y 7_; X; for i =1,2,3. Then

3 3 3 3
A B RD D 22
=1 j=1 j=2 j=3
= (Xl +X2—|—X3)+(XQ+X3)+X3 =X +2X5 +3X3.

(c) Generalise what you found in (b). Or

n
S X = 1X) 42Xz + 3X3 +4Xy - + X,
=1

n
=) X +{X2+2X3+3Xs -+ (n— 1) X, }

=1

n n
:ZXZ'+ZX¢+{X3+2X4"'+(7”L—2)X”}
=1 =2

n n n n
:ZXi+ZXi+"‘++ZXi+ZXi
i=1 i=2 i=n—1 i=n

n o n

D)

=1 i=j
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Solutions to Ex. 2. Let Xq,...,X, an Y7,...,Y,, be random variables, and define the
random variables Z1, ..., Z,1m as follows,

Z1:X17"'5Zn:XTL7 Zn+1:Y17'-')ZTL+m:Ym-

(a)
n+m
Z = Z; = X, Y
1 - _ n o - m -
= X Y = X Yo
n+m(n ntm¥m) n-+m n+n+m m

in terms of X,, and Y,,. (b) When n = m,
1 _ _ _
5 (Xn+¥) = Zorm.

(c) Let a be some constant, then

n n
d(Xi—a)P?=> (Xi— Xp+ X, —a)?
=1 =1
n n

= (n—1)sk +n(X, —a)?,
because Y (X; — X,) =0 and (n —1)s% = > (Xi — X,)2
(d) Look at
n+m n m

(n+m-— 1)322 = Z (Zi — Zn+m)2 = Z(Xz - Zn+m)2 + Z(Yi - Zn+m)2-

i=1 i=1 i=1
It suffices to only look at one of the sums on the right. Use what we found in (¢), with
Zpn+m playing the role of a,

n n

Z(XZ - Z”+m)2 - Z<XZ — X+ Xn — 7n+m)2 =(n— 1)33( =+ n(Xn - 7n+m)2
=1 i=1

_ n — m = 2
=(n—1)s% +n(X, — n+an+n+mYm)
2
nm — —
=(n—1)s% + CEEE (X — V)2,

from which we see that

m 2

_ mn _ _
Some algebra, e.g. nm? + mn? = nm(n + m), then gives
nm _ _

(e) Run and understand the Matlab code.
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Solutions to Ex. 3. Suppose you have a coin whose probability of showing heads equals
0 (some unknown parameter). We represent one toss of this coin by the random variable

0, if tails
X — ) )
{ 1, if heads,
which means that
Pr( X =1)=06.
We decide to toss this coin until we get a heads up, then stop. By so deciding, we can
define a new random variable,

Y = the numbers of tosses until we get heads up,

so that Y takes its values in {1,2,3,...}. For example, if we toss tails, tails, heads, then
Y =3.

(a) We tacitly understand that the tosses are independent, and we can represent the
ith toss by the rv X;, so that Pr(X; = 1) = 6. The few first

Pr(Y =1)=Pr(X;=1)=0,
Pr(Y =2) =Pr(X; =0)Pr(Xo =1) = (1 -6)0,
Pr(Y =3) =Pr(X; =0)Pr(X2 =0)Pr(X3 =1
Pr(Y =4) =Pr(X; =0)Pr(X2 =0)Pr(X3 =0

—_ — — ~—

(b) from which we see a pattern, namely that
Pr(Y =y) = (1—6)V"10.
The pmf of Y is then
foly) = (1—0)Y710, fory=1,2,3,...,

and fp(y) = 0 when y does not equal 1,2,3,....
(c) We know that

n+1

kE_ - k _
E T i and E " =
k=0 k=0

provided z # 1 and |z|< 1, respectively. To show that fy(y) is a pmf we must show that
fo(y) > 0 for all y, and that is sums to one. Since 0 < 0 < 1, fy(y) is non-negative. For
the second,

da-0ple= 9921_9 fH{Zu—e)y—l}
y=1 y=1 y=0

- {l } 9 1-6_ 1
0 1-6 6
(d) Here we show that EY = Z 1yf(y) = 1/60. It is important for what follows that
since 0 < 0 < 1, then0<1—6<1

=> yfly) =) y1 -0y o= % >yl -
y=1 y=1 y=1
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Let us therefore look at 372, y(1 — 0)¥. For this sum we’ll use the result from Ex. 1(c),
generalised to infinite sums,
e} [ k-1
307 = 330 -0r = 30 -0r - 30-07)
k=1y=k k=1 y=1 y=1
00 k-1

s I
<
g}
<
g

k=1 k=1 k=1
1, — 1.1 1—6
This shows that L L s
TE [Y] = 92

and therefore E[Y] = 1/6.
(e) We have independent Y7, ...,Y, from fy(y). First

log fo(y) = log{(1 — 0)"'0} = (y — 1) log(1 — 0) +log ¥,
and the log-likelihood function is

= Zlog fo(Y;) =log(1l —0) Z(Yz —1) +nlogd =log(1l — O)n(Y,, — 1) + nlogf.
= i=1

(f) Find the first derivative of ¢,(6), set it equal to zero,
d n(Y,—1) n
/) W e?
de " (6) = 1-46 0
Solve for  to find the MLE, it is 6, = 1/Y},.
(g) Show that O —p 0, i.e. that 0, is consistent for 6. Note first that
1-6
n6? ’
which is finite, so the Law of large numbers (LLN) applies. Can argue in two ways: (1)
Y, —p 1/6 by the LLN, and g(x) = 1/ is a continuous function (except at z = 0). We
know that if X,, —, a, and h(z) is a continuous function, then h(X,,) —, h(a) (see notes
from Lecture 5, and [Wooldridge| (2019, Property PLIM.1, p. 722)). Thus,
—~ _ 1
O = g(Yn) 5 9(1/6) = 6" 0.
If we did not know about Property PLIM.1, but only knew Chebyshev’s inequality as

=0.

Var(Yy,) =

presented in Lecture 4 (Lemma 4.2 in the machine written lecture notes), we could argue
as follows. Since Y; > 1 for all i, the empirical mean Y;, > 1. Then,

~ 1—6Y,|

| _
10, — 0= —— < |1 -0V,
Yl
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and we must therefore have the following inclusion of events: for any € > 0,
(16, — 0]> €} € {|1 — 6Y,,|> &},
Now, E[0Y,] = 1 and Var(0Y,) = (1 — 0)/n, so
—~ _ 1-6
Pr(|6n, — 0|> €) < Pr(|1 - 0Y,|> ) < 25
where the second inequality comes from Chebyshev’s inequality. The right hand side tends
to zero as n — oo, which shows that 6,, is consistent for 6.

Solutions to Ex. 3. Let Y7,...,Y, be independent random variables; and let x1,...,z,
be some numbers, at least one of which does not equal zero. Assume that Y; ~ N(6z;, 02)
for i = 1,...,n. That is, the density of the ith random variable Y; is
1 1

fi(y;97a2) = \/ﬂﬂ' - T._Q(y_exl)2}a
where ¢ > 0 and 6 € R. In this exercise we will study the maximum likelihood estimators
of § and o2.
(a) The logarithm of the ith density is

exp

1
sy — 0x;)% —log V2w,

1
log f;(y; 0,0°) = —; log 0% — =

using that (1/2)logo? =logo. Then

0n(6,0%) = Zlogfi(Yi;G,UQ) = —%logo'2 By Z — 0x;)? — nlog V2,

and using the chain rule for differentiation, we get

)
55 (0:0%) 22 — Oz;)z

The expectation of 0¢(6, 02)/89 is

0 1
E %E == Z — Ox;)x; = o Z:(le — Ox;)x; = 0.

(b) Set 9¢(0,02)/90 = 0 and solve for 6,
1 & 1 &,
> Yizi =05 ai=0,
i=1 i=1

) >y Yiw
= ==
Z?:l 5%2

so the MLE is

Define

fori=1,...,n,

then
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and we see that we can use Prop. 2.3 in the Lecture notes,

:iai Zamﬂ—GZam—HZz
i=1

which shows that é\n is unbiased for 6.
(c) Similarly, due to the independence of Y1,...,Y, (see HW2 Ex. 3(f)),

]11

n 2

Var Zaa —0'2261 —022 Zna 3

Jlj) Jj=1%j

(d) Suppose that > | z; — 00 as n — 0o, then for any € > 0,
Pr(|, — 0> ¢) < 2 =

as n — o0o. This shows that §n — 0, ie. é\n is consistent for 6.
(e) Differentiate £, (6, 0?) with respect to o2,

d
5oztn(0.0 2 = 204 Z — fOz;)?

Setting 94,,(0,02)/0a% = 0, solving for o2, and inserting the estimator for 6, yields the
MLE,

i=1

(f) Recall that 94,(0,0%)/00 = > & (Y — le)xl evaluated in 6, equals zero, that is
90, (0,,0%) /060 = 0 (some people prefer 9y, (6, o /69‘9:% =0, or the like)
1 .
~9 2
= - _enz = - }/1_02 Hz_enz
o Z x;) - ;( x; + Ox x;)
:*Z{ i — 0,)2 + (0n — 0)%a? — 2(Y; — 02;)(0, — 0)z;}
= - Z {(Y; = 02:)% + (0, — 0)%2? — 2(Yi — Ony + Op; — 02;) (B, — O)a;}

:*Z{ — 03:)2 + (6, — 0)222 — 2(B,, —022}—97;9)8@9

_! ) gy s (Vi) (B, - 0)
- Z{ 0’ 9 0 } n{z 2 2/2 2}

i=1 o i=1T;
o — 9;13@ (Hn —0)?
B {Z Var(6),) )

ﬁn(é\n, 02)
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We can now use Proposition 2.3 in the Lecture notes to find the expectation of 52, but
first

Y, — 0x;)> 1 1
g Y= fei) — S el ;) = —Var(Yy) = 1,
and N
n 2 1 0 1 0
g f) = —E (6, —0)*= ——Var(6,,) =
Var(6,)  Var(6,) Var(6,,)
Then

x;) An— 2 o2
ZE{ L R YY)

Var(6,,) n
(g) Since E [2] = (n — 1) 2/n, we see that 72 is a biased estimator for o2. To show that
72 —, 02 we use Property PLIM.2 in [Wooldridge| (2019, p. 724). First

—1
Lo oY),

G — 0" == (6, ~ Bloz)) + (B[55] — 0%) = (6, — B[5u]) + (—

here ((n — 1)/no? — 0%) = —0?/n is a deterministic sequence that tends to zero, so it
also tends to zero in probability. Second, using PLIM.2(i), we only need to show that
52 — E[02] =, 0: By Chebyshev’s inequality, for any € > 0,

Var(c2)  2(n—1)o*

Pr(|72 — B[22 o) <~ = 21

— 0,

as n — 0o, and we conclude that 52 —, 02, in other words 52 is consistent for 0.

(h) The complete Matlab code for (h)—(k) is given below.
(i) The estimates, based on the data in hw4_data.txt, are
Parameter ‘ Estimate
0 4.5896
o? 2.1719
{Var(6,)}/2 | 0.2534

(j) We are told that

bn 6 N(0,1),

se(fy)
and that Pr(—1.96 < Z < 1.96) = 0.95 when Z ~ N(0,1). A 95% confidence interval for
0 is found by isolating 6

~

b, — 0
se(0n)

A\
—
e
D
—~—
Il
|
—_
e
D
n
[¢)
—~
>
v
IN

{-1.96 < 0, — 6 < 1.96s¢(6,)}

—0 < =6, + 1.96¢(6,)}

) <
= {6, — 1.965¢(6,,) < 6 < By, + 1.965¢(6,)},
so that

NN
IN
CD

Pr{, — 1.96se(b,, < 6, + 1.965¢(6,)} = 0.95.

Therefore
[0, — 1.96se(0y,), 0, + 1.96se(6,)],
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FIGURE 1. A scatter plot of the pairs of (z;,Y;) for ¢ = 1,...,n found in
hw4 _data.txt, with the fitted line g,(z) = 0,2 overlaid.

is a random interval that will contain 6 with 95% probability. It is what is called a 95%
confidence interval. A realisation of this interval based on the data in hw4_data.txt is

[4.09, 5.00].
(k) The plot is in Figure [1} and here is the Matlab code

cd("~/your_path/");

data = readmatrix("hw4_data.txt");
x = data(:,1);

y = data(:,2);

thetahat = sum(x.*y)/sum(x."2);
sigma2hat = mean((y - hat.*x)."2);
se_thetahat = sqrt(sigma2hat/sum(x.~2));

% A 95 prct confidence interval
thetahat - 1.96%*se_thetahat
thetahat + 1.96%*se_thetahat

scatter(x,y)
line(x,thetahat.*x,"Linewidth",2,"Color","b");
saveas(gcf,"”/your_path/hwéscatter.eps","epsc");
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