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Exercise 1. In this exercise we prove Property PLIM.2 in Wooldridge (2019, p. 723).

Recall that Xn →p a if for any ε > 0,

Pr(|Xn − a|≥ ε)→ 0, as n→∞.

Wooldridge (2019) writes plim(Xn) = a where I write Xn →p a. Useful tools when proving

the following claims are the Law of total probability (see hw1, Ex. 4(b)): If A and B are

two events, then Pr(A) = Pr(A∩B) + Pr(A∩Bc) = Pr(A | B)Pr(B) + Pr(A | Bc)Pr(Bc);

and the triangle inequality: For any real numbers x and y

|x+ y|≤ |x|+|y|.

Assume that Xn →p a and Yn →p b as n→∞.

(a) Let c be a constant not equal to zero (or else it is trivial). Show that

cXn
p→ ca.

(b) Show that

Xn + Yn
p→ a+ b.

(c) Show that XnYn →p ab. Hint: Add zero a couple of times and use the triangle

inequality to show that

|XnYn − ab|≤ |(Xn − a)(Yn − b)|+|b||Xn − a|+|a||Yn − b|,

and use the results from (a) and (b).

(d) Show that Xn/Yn →p a/b provided b 6= 0. Hint: Use that if Yn → b, and g(y) is a

continuous function, then g(Yn)→ g(b), combined with the result from (c).

Exercise 2. A random variable Y has the Poisson distribution with parameter θ if its

pmf is

fθ(y) =
1

y!
θy exp(−θ), for y = 0, 1, 2, . . .,

and fθ(y) = 0 otherwise. Let Y1, . . . , Yn be i.i.d. Poisson with parameter θ. If you have

not done so already, find the maximum likelihood estimator for θ (see hw3 Ex. 1). In

this exercise we want to estimate the probability of Y = 0. You might need the following

fact about maximum likelihood estimators: If θ̂n is the MLE for θ, and h(x) is some real

valued function, then h(θ̂n) is the MLE for h(θ).
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(a) Let θ̂n be the MLE for θ. Explain why θ̂n →p θ (we say that θ̂n is a consistent

estimator for θ).

(b) Find the MLE, say α̂n, for α = Prθ(Y = 0).

(c) Explain why α̂n is consistent for α, i.e. that α̂n →p α.

Exercise 3. Two random variables with the same cdf have the same distribution. In a

previous homework we met the Pareto distribution. Recall that the pdf of the Pareto

distribution is

fα(x) = α
xαmin

xα+1
, for x ≥ xmin,

and fα(x) = 0 when x < xmin, where xmin > 0 and α > 0. In this exercise, we assume

that xmin is known, while α is a parameter we want to estimate. Suppose that X1, . . . , Xn

are i.i.d. from fα(x). If you have not already done so, please show that the maximum

likelihood estimator for α is

α̂n =
n∑n

i=1 log(Xi/xmin)
.

We will now try to show that α̂n is consistent for α, i.e. that α̂n →p α.

(a) Let Fα(x) be the cdf of the Pareto distribution. Find an expression for it (you did

this in a previous homework).

(b) Suppose X ∼ Fα, i.e. X has the Pareto distribution. Define,

Y = log(X/xmin).

Show that the cdf of Y is

F̃α(y) = 1− exp(−αy), for y ≥ 0,

and F̃α(y) = 0 for y < 0. Hint: Start with Pr(Y ≤ y) an rearrange things so that

you isolate X on the left hand side of the inequality, then use (a).

(c) Compute the expectation and variance of Y . Hint: Look back at hw2 Ex. 5.

(d) Let Yi = log(Xi/xmin) for i = 1, . . . , n. Explain why Ȳn = (1/n)
∑n

i=1 Yi →p 1/α.

(e) Explain why α̂n is consistent for α.

Exercise 4. (This exercise is a continuation of Ex. 7 in hw2. For completeness, that exer-

cise is restated here, in slightly rewritten form.) Suppose that X1, . . . , Xn are i.i.d. random

variables with the uniform distribution on [0, θ], i.e. its pdf is f(x) = 1/θ for 0 ≤ x ≤ θ

and zero otherwise. Let Mn = maxi≤nXi = max{X1, . . . , Xn} be the largest of the obser-

vations. In this exercise you need to know that

lim
n→∞

(1 + x/n)n = exp(x),

for any real number x.

(a) Show that the cdf of one uniform X on [0, θ] is

F (x) =


0, for x < 0,

x/θ, for 0 ≤ x ≤ θ,
1 for θ ≤ x.

(1)
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(b) Explain why

Pr(Mn ≤ x) = F (x)n.

(c) Consider the sequence (Zn)n≥1 of random variables defined by

Zn = n(θ −Mn), for n = 1, 2, . . ..

Show that

Pr(Zn ≤ z) = 1−
(
1− z

θn

)n
,

for z ≥ 0 and Pr(Zn ≤ z) = 0 for z < 0.

(d) Show that Zn converges in distribution, and find the expectation and variance of

the limiting distribution. That is, if Zn →d Z, say, find E [Z] and Var(Z).

Exercise 5. Let Y1, . . . , Yn be i.i.d. random variables with E [Y1] = θ and Var(Y1) = τ2 =

2.34, which means that the expectation is unknown while the variance is known. A natural

estimator for θ is θ̂n = Ȳn = n−1
∑n

i=1 Yi (why?).

(a) Identify what distribution
√
n(θ̂n − θ)/τ converges to.

(b) Let Ln = L(Y1, . . . , Yn) and Un = U(Y1, . . . , Yn) be the lower and upper bound of

a random interval [Ln, Un] that contains θ with probability approximately equal

to 90%. Find expressions for Ln and Un. Hint: To find the 0.95 quantile of the

standard normal distribution in Matlab, run norminv(0.95).

(c) Read the dataset hw5 data.txt into Matlab, and compute a realisation of the

interval you found in (b). Here is some code that you can use.

cd("~/your path");

data = readmatrix("hw5_data.txt");

dimdata = size(data);

n = dimdata(1);

y = data(:,1);

(d) In this exercise we check by way of simulation how accurate the approximation

in (b) is for n = 50. To do so we sample 50 random numbers from the Gamma

distribution, compute the interval, and check whether our interval contains the

expectation of the Gamma distribution. This we do 1 000 times, thus producing

1 000 intervals, then we count how many of these intervals contain the expectation

of the Gamma distribution. The pdf of the Gamma distribution with parameters

a > 0 and b > 0 is

fa,b(y) =
1

baΓ(a)
ya−1 exp(−y/b), for y > 0,

and fa,b(y) = 0 otherwise. Here Γ(x) is the Gamma-function. If Y ∼ fa,b(y), then

E [Y ] = ab and Var(Y ) = ab2. Here is code where you have to fill in some details.

a = 2*2.34;

b = 1/sqrt(2);

n = 50;

sims = 1000

contains = zeros(1,sims);

for i = 1:sims
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y = gamrnd(a,b,1,n);

Ln = % fill in

Un = % fill in

contains(i) = 1*((Ln <= a*b)&(a*b <= Un));

end

mean(contains)

Exercise 6. Simulate a conditional probability. Consider a fair die: Its possible outcomes

are {1, 2, 3, 4, 5, 6}, and it being fair means that Pr(X = j) = 1/6 for j = 1, 2, 3, 4, 5, 6,

where X is the random variable we associate with a roll of a die. Let A = {1, 2, 3}, and

B = {1, 3, 5} be two events.

(a) Compute Pr(A | B).

(b) In the script below we use simulations to check the answer from (a). In other

words, we estimate Pr(A | B) on simulated data.

x = datasample(1:6,100,"Replace",true);

inA = zeros(1,length(x)); inB = zeros(1,length(x));

for i = 1:length(x)

if x(i) <= 3

inA(i) = 1;

end

if (x(i) == 1)|(x(i) == 3)|(x(i) == 5)

inB(i) = 1;

end

end

mean(inA.*inB)/mean(inB)

The function datasample samples from the numbers {1, 2, 3, 4, 5, 6} with uniform

probability. The symbol | reads ‘or’, as in the union of two sets. Understand the

code, run it a few times, and check you answer from (a).
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