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EMIL A. STOLTENBERG

Exercise 1. It’s your turn to derive the least squares estimators. We have data

(Y1, x1), . . . , (Yn, xn)

that come from the model

Yi = β0 + β1xi + εi, for i = 1, . . . , n,

where ε1, . . . , εn are independent and identically distributed (i.i.d.) random variables with

expectation E [ε1] = 0 and variance Var(ε1) = σ2; x1, . . . , xn are fixed numbers (not

random variables), and we assume that they are not all equal, so that
∑n

i=1(xi− x̄n)2 > 0.

We’ll take β0, β1 and σ2 to be unknown parameters. The least squares estimators for β0
and β1 are the minimisers of the function

g(β0, β1) =

n∑
i=1

(Yi − β0 − β1xi)2.

We’ll denote the minimisers of g(β0, β1) by β̂0 and β̂1.

(a) Show that

E [Yi] = β0 + β1xi, and Var(Yi) = σ2,

for each i. What is E [(Yi − β0 − β1xi)2] equal to?

(b) Why must it be true that g(β̂0, β̂1) ≤ g(1.23, 4.56)?

(c) Explain why it is a good idea to use the minimisers β̂0 and β̂1 as our estimators

for the unknown parameters β0 and β1.

(d) Use what you know about sums to show that

∂

∂β0
g(β0, β1) = −2n

(
Ȳn − β0 − β1x̄n

)
,

∂

∂β1
g(β0, β1) = −2

( n∑
i=1

Yixi − nβ0x̄n − β1
n∑

i=1

x2i
)
.

where Ȳn = (1/n)
∑n

i=1 Yi and x̄n = (1/n)
∑n

i=1 xi.

(e) Set
∂

∂β0
g(β0, β1) = 0, and

∂

∂β1
g(β0, β1) = 0,
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and solve for β0 and β1. Show that the solution is

β̂1 =

∑n
i=1(xi − x̄n)(Yi − Ȳn)∑n

i=1(xi − x̄n)2
, and β̂0 = Ȳn − β̂1x̄n. (1)

These are the least squares estimators.

(f) Show that we may write

β̂1 =

∑n
i=1(xi − x̄n)Yi∑n
i=1(xi − x̄n)2

, and β̂0 =

n∑
i=1

( 1

n
− (xi − x̄n)x̄n∑n

j=1(xj − x̄n)2
)
Yi.

(g) The expressions from (f) makes it easier to show that

E [β̂0] = β0, and E [β̂1] = β1,

and that

Var(β̂0) =
( 1

n
+

x̄2n∑n
i=1(xi − x̄n)2

)
σ2, and Var(β̂1) =

σ2∑n
i=1(xi − x̄n)2

.

Check that these expressions are correct.

(h) As you can see from the expressions in (g), in order to say something about the

uncertainty (the variance) of our estimators we need to estimate the unknown σ2.

Consider the estimator given by

σ̂2n =
1

n

n∑
i=1

(Yi − β̂0 − β̂1xi)2. (2)

Explain why this estimator seems reasonable at doing what we want it to do,

namely estimate σ2.

Exercise 2. In this exercise we take a closer look at the estimator σ̂2n given in (2), that is

we continue work on the model introduced and studied in Ex. 1. The goal of the exercise

is to show that σ̂2n is biased for σ2, and consequently construct an unbiased estimator.

Recall that, in general, an estimator θ̂n for θ is unbiased for θ if E [θ̂n] = θ, and is biased

for θ if E [θ̂n] 6= θ.

(a) When evaluated in the minimiser β̂0 and β̂1 of g(β0, β1), the partial derivatives of

g(β0, β1) equals zero, i.e.

∂

∂β0
g(β̂0, β̂1) = 0, and

∂

∂β1
g(β̂0, β̂1) = 0.

This fact is helpful when deriving that

σ̂2n =
1

n

n∑
i=1

(Yi − β̂0 − β̂1xi)2 =
1

n

n∑
i=1

Y 2
i − Ȳ 2

n −
1

n
(β̂1)

2
n∑

i=1

(xi − x̄n)2.

Derive the right hand side expression yourself. If you don’t manage this, just skip

to (b).
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(b) Show that

E [Y 2
i ] = σ2 + (β0 + β1xi)

2, for i = 1, . . . , n,

and that

E [Ȳ 2
n ] =

σ2

n
+ (β0 + β1x̄n)2, and E [(β̂1)

2] =
σ2∑n

i=1(xi − x̄n)2
+ β21 .

Hint: Recall that Var(Z) = E [Z2]− (E [Z])2.

(c) Show that we can write

E
[ n∑
i=1

Y 2
i

]
= nσ2 + n(β0 + β1x̄n)2 + β21

n∑
i=1

(xi − x̄n)2.

Hint: Use that β0 + β1xi = β0 + β1x̄n + β1(xi − x̄n).

(d) Combine the results from (a), (b), and (c) to show that σ̂2n is biased for σ2, in fact

E [σ̂2n] =
n− 2

n
σ2.

(e) Find an unbiased estimator for σ2.

Exercise 3. A good way to get to know a model, as well as the behaviour of the estimators

of the unknown parameters of the model, is to simulate data from it. Consider the model

Yi = β0 + β1xi + εi, for i = 1, . . . , n, (3)

where the ε1, . . . , εn are i.i.d. normal random variables with expectation 0 and variance

σ2. To simulate from this model we need to insert some actual numbers for the unknown

parameters. Set β0 = −0.543, β1 = 1.234, and σ2 = 2.345. For the covariates x1, . . . , xn
we’ll use

xi = i/n, for i = 1, . . . , n,

and we set n = 100. In the Matlab script below I simulate a dataset

Y1, . . . , Yn,

from this model.

n = 100;

beta0 = -0.543; beta1 = 2.345;

sigma2 = 1.234;

x = linspace(1/n,1,n);

eps = normrnd(0,sqrt(sigma2),1,n);

y = beta0 + beta1.*x + eps;

(a) Simulate a dataset using the code above and estimate the parameters β0 and

β1. Make a scatter plot of you simulated data, and add the true regression line

(x, β0 + β1x) and the estimated regression line (x, β̂0 + β̂1x) to the scatter plot.

One such plot is in Figure 1. Run the script a few times.
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Figure 1. The plot described in Ex. 3(a). The red line is the true regres-

sion line, the green line is the estimated regression line.

(b) We now want to simulate 1000 datasets from the model in (3), for each dataset

we estimate β1 using the least squares estimator β̂1, and save our estimate. To

do that we wrap parts of the script above into a for-loop. Here is code with some

details that you must fill in (note also that the script builds on the script above).

sims = 1000;

hats = zeros(1,n);

for u = 1:sims

eps = normrnd(0,sqrt(sigma2),1,n);

y = beta0 + beta1.*x + eps;

beta1hat = % fill in

hats(u) = beta1hat;

end

(c) Make a histogram of the estimates of β1, and add the pdf of the normal distribution

with expectation E [β̂1] and Var(β̂1). Your plot should resemble the plot in Figure 2

(d) We call Ŷi = β̂0 + β̂1xi the fitted values. Show that we can write

Ŷi =
n∑

j=1

{ 1

n
+

(xj − x̄n)(xi − x̄n)∑n
i=1(xi − x̄n)2

}
Yj , for i = 1, . . . , n,

and use this expression to show that the variance of the fitted values are

Var(Ŷi) =
{ 1

n
+

(xi − x̄n)2∑n
i=1(xi − x̄n)2

}
σ2 for i = 1, . . . , n.

(e) The residuals u1, . . . , un are defined by

ui = Yi − Ŷi, for i = 1, . . . , n. (4)
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Figure 2. The histogram described in Ex. 3(c).

They give the deviance from the observation Yi to the fitted line β̂0−β1xi at each

point xi in the data. Show that E [ui] = 0. For each i, we can write

ui = εi −
n∑

j=1

{ 1

n
+

(xj − x̄n)(xi − x̄n)∑n
i=1(xi − x̄n)2

}
εj .

for i = 1, . . . , n. Try to show this, and use it to find that the variance of the ith

residual is

Var(ui) = σ2
(
1− 1

n
− (xi − x̄n)2∑n

j=1(xj − x̄n)2
)
.

So when n and
∑n

i=1(xi− x̄n)2 are big, then Var(ui) ≈ σ2. Our n equals 100. and

with our covariates xi = i/n for i = 1, . . . , n we have

n∑
i=1

(xi − x̄n)2 =
(n+ 1)(n− 1)

12n
, and max

i≤n
(xi − x̄n)2 =

(n− 1)2

4n2
.

You do not need to show this, but if you want to, it helps to know that
∑n

i=1 i =

n(n+ 1)/2, and that
∑n

i=1 i
2 = n(n+ 1)(2n+ 1)/6.

(f) In Figure 3 I have made a histogram of the residuals from fitting the model in (3)

on simulated data, and added the pdf of a normal distribution. Reproduce the

figure.

Exercise 4. In this exercise we continue our analysis of basketball players in the National

Basketball Association (NBA) during the 2019–2020 season. The NBA is the men’s profes-

sional basketball league in the US. You can find the dataset for this exercise on Itslearning,
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Figure 3. The histogram described in Ex. 3(f).

it is called nba 20192020 lec6.txt. I retrieved these data from https://www.basketball-

reference.com/.

In this exercise we look at the relation between the efficiency of a player and his salary.

The efficiency, which we denote EFF, is defined by

EFF = PTS + TRB + AST + STL + BLK− missFG− missFT− TOV, (5)

where

- PTS= Points scored per game;

- TRB= Rebounds per game;

- AST= Assists per game;

- STL= Steals per game;

- BLK= Blocks per game;

- missFG= Missed field goals (i.e. shot attempts) per game;

- missFT= Missed free throws per game;

- TOV= Turnovers (losing the ball to the opposing team) per game;

all based on the 2019–2020 (regular) season.

To compute these quantities we need the following columns from the nba 20192020 lec6.txt

dataset, PTS, TRB, AST, STL, BLK, FG, FGA, FT, FTA, TOV. All of these are per game statistics.

Most of these are self explanatory in view of the list above, except FG= Made field goals

per game; FGA= Field goal attempts per game; FT= Free throws per game; and FTA= Free

throw attempts per game. Thus,

missFG = FGA− FG, and missFT = FTA− FT.

https://www.basketball-reference.com/
https://www.basketball-reference.com/
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The first few rows of the dataset look like this

(a) Compute the efficiency of each player using the formula in (5).

(b) Make a histogram of the efficiency of players who played 20 games or more, and

played 10 minutes or more per game (a NBA game lasts for 48 minutes). Among

these players, find the name of the player with the lowest efficiency, and the name

of the player with the highest efficiency.

(c) Make a scatter plot of efficiency and salary of the players who played 20 games or

more, and played 10 minutes or more per game. Add the line (x,−3519495.44 +

963183.84x) to your scatter plot.

(d) We would like to fit a model of the type

Salaryi = β0 + β1Effi + εi, for i = 1, . . . , n,

where ε1, . . . , εn are i.i.d. normally distributed random variables with expectation

0 and variance σ2 to the data. Looking at the scatter plot you made in (c), can

you see a problem with fitting this model to the data, that is, an assumption of

this model that seems to be broken in the data? Hint: Look at the spread of the

blue dots around the green line as the efficiency increases.

(e) Still, just considering the players who played 20 games or more, and played 10

minutes or more per game (I find 308 such), define

Yi = log(Salaryi), and xi = log(Effi), for i = 1, . . . , 308.

Make a scatter plot with of the pairs (xi, Yi) for i = 1, . . . , 308.

(f) Consider the model

Yi = β0 + β1xi + εi, for i = 1, . . . , 308, (6)

where ε1, . . . , ε308 are independent normally distributed random variables with

expectation 0 and variance σ2. Use the least squares estimators to estimate β0
and β1. What are your estimates? Add the fitted line

(x, β̂0 + β̂1x),

to the scatter plot you made in (f).

(g) Use the estimator σ̂2 given in (2), and estimate σ2.

(h) Under the assumption that ε1, . . . , εn are independent normals,

β̂1 − β1
{Var(β̂1)}1/2

∼ N(0, 1).

Construct an interval that contains β1 with probability 0.95. Use you estimates to

compute a realisation of this interval. See hw4. Ex. 4(j).

(i) Compute the residuals as defined in (4), and make a histogram of these.
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