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Solutions to Ex. 1. The model is

Yi = β0 + β1xi + εi, for i = 1, . . . , n,

where ε1, . . . , εn are independent and identically distributed (i.i.d.) random variables with

expectation E [ε1] = 0 and variance Var(ε1) = σ2; x1, . . . , xn are fixed numbers (not

random variables), and we assume that they are not all equal, so that
∑n

i=1(xi− x̄n)2 > 0.

(a) Use that E [a+X] = a+ E [X] when X is a rv and a is a constant,

E [Yi] = E [β0 + β1xi + εi] = β0 + β1xi + E [εi] = β0 + β1xi

since β0 + β1xi is a constant, and E [εi] = 0. Use that Var(a+X) = Var(X) when X is a

rv and a is a constant,

Var(Yi) = Var(β0 + β1xi + εi) = Var(εi) = σ2.

(b) That β̂0 and β̂1 are the minimisers of g(β0, β1) means that

g(β̂0, β̂1) ≤ g(β0, β1) for all β0 and β1,

Then it is certainly true that g(β̂0, β̂1) ≤ g(1.23, 4.56). (c) Make a drawing with some

data points in the plance, and think about what you find to be the ‘best’, or a good, line.

(d) We did this in lecture.

(e) We did this one also in lecture. It is important to remember that (See hw1, Ex. 10(a))

n∑
i=1

(xi − x̄n)(Yi − Ȳn) =
n∑

i=1

(xi − x̄n)Yi.

(f) The expression for β̂1 is immediate from the expression just above. For β̂0,

β̂0 = Ȳn − β̂1x̄n
1

n

n∑
i=1

Yi −
∑n

i=1(xi − x̄n)Yi∑n
j=1(xj − x̄n)2

x̄n

=

n∑
i=1

( 1

n
− (xi − x̄n)x̄n∑n

j=1(xj − x̄n)2
)
Yi.
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The reason for writing the estimators like this, is to see that they are linear in the

Y1, . . . , Yn. This fact also makes it easier to compute the expectation and the variance of

the estimators. That is, we see that

β̂1 =
n∑

i=1

aiYi, and β̂0 =
n∑

i=1

biYi, (1)

with

ai =
xi − x̄n∑n

j=1(xj − x̄n)2
, and bi =

1

n
− (xi − x̄n)x̄n∑n

j=1(xj − x̄n)2
,

for j = 1, . . . , n.

(g) We use the expression from (1). Note that
∑n

i=1 ai = 0, and that
∑n

i=1 bi = 1. Also,

n∑
i=1

aixi =
n∑

i=1

xi − x̄n∑n
j=1(xj − x̄n)2

xi =

∑n
i=1(xi − x̄n)xi∑n
j=1(xj − x̄n)2

= 1,

because
∑n

i=1(xi − x̄n)xi =
∑n

i=1(xi − x̄n)2. Also,

n∑
i=1

bixi =
n∑

i=1

( 1

n
− (xi − x̄n)x̄n∑n

j=1(xj − x̄n)2
)
xi = x̄n −

∑n
i=1(xi − x̄n)xi∑n
j=1(xj − x̄n)2

x̄n = x̄n − x̄n = 0,

for the same reason. Then, using Prop. 2.3 in the Lecture notes,

E [β̂1] =

n∑
i=1

aiE [Yi] =

n∑
i=1

ai(β0 + β1xi) = β1

n∑
i=1

aixi = β1.

and

E [β̂0] =
n∑

i=1

biE [Yi] =
n∑

i=1

bi(β0 + β1xi) = β0 + β1

n∑
i=1

bixi = β0.

For the variance,

Var(β̂1) = Var (
n∑

i=1

aiYi) =
n∑

i=1

a2i Var(Yi) =
n∑

i=1

a2iσ
2 = σ2

n∑
i=1

a2i .

because the Y1, . . . , Yn are independent, and the ai are constants (not random variables).

See hw2, Ex. 3(d)–(f). And similarly,

Var(β̂0) = Var (

n∑
i=1

biYi) = σ2
n∑

i=1

b2i .

So you only need to check that
∑n

i=1 a
2
i and

∑n
i=1 b

2
i are as given in the exercise.

(h) We can argue like this: We want an estimator for σ2,

E [(Yi − β0 − β1xi)2] = E [ε2i ] = Var(εi) = σ2.

The rv’s ε21, . . . , ε
2
n are i.i.d., so by the Law of large numbers their empirical mean should,

for n large enough, be close to their expectation E [ε21] = σ2. Thus,

1

n

n∑
i=1

ε2i ≈ E [ε2i ] = σ2,
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when n is large. We do not observe the ε2i = (Yi − β0 − β1xi)2 random variables, but we

hope to get close by inserting the our estimators for β0 and β1. This gives

σ̂2n =
1

n

n∑
i=1

(Yi − β̂0 − β̂1xi)2.

Solutions to Ex. 2. There are many ways of doing this. Since β̂0, β1 solves

∂

∂β0
g(β0, β1) = 0, and

∂

∂β1
g(β0, β1) = 0,

we know that

n∑
i=1

(Yi − β̂0 − β̂1xi) = 0, and that
n∑

i=1

(Yi − β̂0 − β̂1xi)xi = 0.

We use this in the fourth equality here

σ̂2n =
1

n

n∑
i=1

(Yi − β̂0 − β̂1xi)2 =
1

n

n∑
i=1

(Yi − β̂0 − β̂1xi)(Yi − β̂0 − β̂1xi)

=
1

n

n∑
i=1

(Yi − β̂0 − β̂1xi)Yi −
1

n
β̂0

n∑
i=1

(Yi − β̂0 − β̂1xi)−
1

n
β̂1

n∑
i=1

(Yi − β̂0 − β̂1xi)xi

=
1

n

n∑
i=1

(Yi − β̂0 − β̂1xi)Yi =
1

n

n∑
i=1

Y 2
i − β̂0Ȳn −

1

n
β̂1

n∑
i=1

xiYi

=
1

n

n∑
i=1

Y 2
i − (Ȳn − β̂1x̄n)Ȳn −

1

n
β̂1

n∑
i=1

(xi − x̄n + x̄n)Yi

=
1

n

n∑
i=1

Y 2
i − Ȳ 2

n + β̂1x̄nȲn −
1

n
β̂1

n∑
i=1

(xi − x̄n)Yi − β̂1x̄nȲn

=
1

n

n∑
i=1

Y 2
i − Ȳ 2

n − (β̂1)
2 1

n

n∑
i=1

(xi − x̄n)2.

because
∑n

i=1(xi − x̄n)Yi = β̂1
∑n

i=1(xi − x̄n)2.

(b) Using that Var(Z) = E [Z2] − (E [Z])2 for any random variable Z, the expressions

given in this exercise follow from what we found in Ex. 1.
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(c) Write

E
n∑

i=1

Y 2
i =

n∑
i=1

EY 2
i =

n∑
i=1

{σ2 + (β0 + β1xi)
2}

= nσ2 +
n∑

i=1

{β0 + β1x̄n + β1(xi − x̄n)}2

= nσ2 +
n∑

i=1

{(β0 + β1x̄n)2 + 2(β0 + β1x̄n)β1(xi − x̄n) + β21(xi − x̄n)2}

= nσ2 + n(β0 + β1x̄n)2 + β21

n∑
i=1

(xi − x̄n)2,

because
∑n

i=1(xi − x̄n) = 0.

(d) The point of finding the expression for σ̂2n that we found in (a) is that it makes it

easier to compute the expectation.

E σ̂2n =
1

n

n∑
i=1

E [Y 2
i ]− E [Ȳ 2

n ]− 1

n
E [β̂1]

n∑
i=1

(xi − x̄n)2

= σ2 + (β0 + β1x̄n)2 + β21
1

n

n∑
i=1

(xi − x̄n)2

− σ2

n
− (β0 + β1x̄n)2 − 1

n

( σ2∑n
j=1(xj − x̄n)2

+ β21
) n∑
i=1

(xi − x̄n)2

= σ2 − σ2

n
− σ2

n
= σ2

n− 2

n
.

(e) Since

E σ̂2n =
n− 2

n
σ2,

we see that an unbiased estimator of σ2 is

n

n− 2
σ̂2n =

1

n− 2

n∑
i=1

(Yi − β̂0 − β̂1xi)2.

Solutions to Ex. 3. The Matlab script for this exercise was written during the TA-

session 30/9, and you can find the .m-files in the TA-sessions folder on Itslearning. For

exercise (d) and (e), use techniques similar to those used in Ex. 1.

Solutions to Ex. 4. The Matlab script for this exercise is also in the the TA-sessions

folder on Itslearning, and is called TA session6 Ex4.m.
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