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AUTUMN 2020

EMIL A. STOLTENBERG

Exercise 1. (Is my coin fair?) You have a coin and you think it is a fair coin, that is,

you think your coin is equally likely to show heads and tails. Call this your null hypothesis,

the alternative being that your coin is unfair:

H0 : fair coin vs. HA : unfair coin.

(a) Translate the null-hypothesis and the alternative hypothesis above into hypotheses

about an unknown parameter, p = Pr(coin showing heads), say.

(b) You want to test whether your coin is fair. Here is one way of going about doing that:

Toss the coin 6 times and count the number of heads and tails. If you get a sequence of

heads and tails, for example,

HHH T H H, (1)

that you think is sufficiently strange for a fair coin (if my coin is fair, why just one tail?!),

you might change your opinion about the coin being fair. In statistics, one says that you

reject the null-hypothesis.

Suppose that H0 is true, that is, assume that your coin is fair. What is the probability

of getting the sequence in (1)? You’ll find that the probability of getting (1) is small, it’s

a strange sequence in a way. Should you stop believing in H0 based on this?

Look at the sequence of coin tosses

H T H T H T.

Still assuming H0 is true, what is the probability of getting this sequence?

(c) Count the number of different sequences it is possible get in six tosses of a coin? Hint:

Make a drawing.

(d) If a coin is indeed fair, a sequence like the one in (1) is somewhat surprising, but

there are other sequences that are just as surprising, and still some that are even more

surprising, given that the coin is fair. Explain why the number of sequences that are just

as surprising, or even more surprising than the sequence in (1), is 14.

(e) Assuming that H0 is true, compute the probability

Pr{getting a sequence that is as surprising, or even more surprising than (1)}.

The probability you just computed is an example of a p-value. How do you feel about H0?
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1



2 STOLTENBERG

Exercise 2. Remember that the cdf of a random variable tells us all there is to know

about the random variable. For example, if X has cdf FX and Y has cdf FY , and it

so happens that FX(x) = FY (x) for all x, then X and Y have the same distribution.

Similarly, if X is a random variable with cdf FX , and Y is another random variable, and

g is a function such that

Pr(g(Y ) ≤ x) = FX(x),

for all x. Then the random variable g(Y ) has the same distribution as X. Let

Φ(z) =

∫ z

−∞

1√
2π

exp(−y2/2) dy,

be the cdf of the standard normal distribution.

(a) Prove Lemma 1 from the lecture: If X ∼ N(a, b2), then

X − a
b
∼ N(0, 1).

(b) If X ∼ N(a, b2), show that

Pr(X ≤ x) = Φ
(x− a

b

)
.

(c) Let X1, . . . , Xn be i.i.d. random variables with the N(µ, σ2) distribution, and, as

usual X̄n = (1/n)
∑n

i=1Xi. Show that

X̄n ∼ N(µ, σ2/n),

and that

X̄n − µ ∼ N(0, σ2/n),

and, finally, that
X̄n − µ
σ/
√
n
∼ N(0, 1).

(d) With X1, . . . , Xn as above, show that

Pr(X̄n ≤ x) = Φ
( x− µ
σ/
√
n

)
= Φ

(√n(x− µ)

σ

)
.

(e) The normal distribution is symmetric around its mean: If X ∼ N(µ, σ2), then for

z > 0,

Pr(X ≤ µ− z) = Pr(X ≥ µ+ z) = 1− Pr(X ≤ µ+ z).

In particular,

Pr
(X − µ

σ
≤ −z

)
= Φ(−z) = 1− Φ(z) = Pr

(X − µ
σ

≥ z
)
.

Try this out in Matlab

z = 1.645;

normcdf(-z,0,1)

1 - normcdf(z,0,1)

norminv(normcdf(-z,0,1),0,1)

norminv(normcdf(z,0,1),0,1)
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Figure 1. The power function in (2) for n = 10, θnox = 0.234, and σ2 =

1.23. The red line is the significance level 0.025. The grey line indicates

θnox, to the right of this vertical line H0 is true, to the left HA is true.

Here norminv(p,0,1) is the inverse Φ−1(p) of Φ(z), that is Φ−1(Φ(z)) = z.

(f) Let X1, . . . , Xn be i.i.d. N(µ, σ2), with σ2 = 2.34. Find an expression for a 90%

confidence interval for µ.

Exercise 3. You work for Oslo kommune and one day in the late spring your job is to

check the concentration of intestinal bacteria in the water at Sørenga sjøbad. You bring

n = 10 samples of water back to the laboratory, and measure the concentration of intestinal

bacteria on a measurement device giving unbiased estimates with normally distributed

errors with variance 1.23, each measurement being independent. This means that we have

X1, . . . , Xn i.i.d. random variables from a N(θ, σ2) distribution, with σ2 = 1.23, and θ is

the true concentration of intestinal bacteria in the water. If θ ≥ θnox, with θnox = 0.234,

then people ought absolutely not to swim at Sørenga sjøbad. You formulate the following

null- and alternative hypotheses

H0 : θ ≥ θnox, vs. HA : θ < θnox

(a) Explain why the hypotheses above are reasonable.

(b) It is natural to reject the null-hypothesis if X̄n = (1/n)
∑n

i=1Xi is much smaller

than θnox. A test for the null-hypothesis is: Reject H0 if

X̄n − θnox ≤ cn,

for some number cn. Explain why the cn ensuring that the probability of rejecting

H0 when E [X1] = θ = θnox is 0.025, is

cn =
σΦ−1(0.025)√

n
= −σ1.96√

n
.
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(c) The probability of rejecting H0 when E [X1] = θ is

Prθ(reject H0) = Prθ(X̄n − θnox ≤ cn),

where this probability is computed for the θ given in the subscript. This means

that with the cn from (b),

Prθnox(reject H0) = Prθnox(X̄n − θnox ≤ cn) = 0.025.

If we regard Prθ(reject H0) as a function of θ, we get what is called the power

function,

power(θ) = Prθ(reject H0) = Prθ(X̄n − θnox ≤ cn). (2)

Show that

power(θ) = Φ
(
− 1.96−

√
n(θ − θnox)

σ

)
.

(d) Graph the power function. Your plot should look like the plot in Figure 1.

Exercise 4. Here are n = 10 data points.

-0.1887 -0.3978 2.7470 0.4135 0.1691 1.6996 1.2608 0.1342 -0.1759 0.4977

You know that these are realisations of i.i.d. random variables X1, . . . , Xn that are inde-

pendent and have known variance 1. You do not know what their expectation E [X1] = θ

is, and your job is to test the hypothesis that

H0 : θ = 0,

versus the alternative HA : θ 6= 0. Index probabilities by a subscript,

Prθ(X1 ≤ x) =

∫ x

−∞

1√
2π

exp{−(y − θ)2/2} dy,

so that Pr0(X1 ≤ x) = Φ(x) is the cdf of the standard normal distribution.

(a) Since X̄n = (1/n)
∑n

i=1Xi is an unbiased and consistent estimator of the expecta-

tion of the Xi’s, it is natural to reject H0 if

X̄n ≤ −cn or X̄n ≥ cn, (3)

for some cn > 0. Show that the cn that ensures that the probability of committing

a Type I error does not exceed 0.10 is

cn =
Φ−1(0.95)√

n
.

where Φ−1(p) is the inverse of the standard normal cdf Φ(z).

(b) The decision rule described in (3) is called a test. The power of a test is the

probability that we reject H0 for various values of the parameter we are interested

in, here θ. It is the function

power(θ) = Prθ(reject H0).

We want power(θ) to be big when H0 is false, and small when H0 is true. Show

that

power(θ) = Φ{−
√
n(cn + θ)}+ 1− Φ{

√
n(cn − θ)}. (4)
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Figure 2. The power function in (4) for n = 10 and for n = 100. The red

line is the significance level 0.10.

Hint: Use the result from Ex. 2.

(c) Reproduce the plot in Figure 2. It is a plot of the power functions when n = 10

and when n = 33.

(d) What is the probability of rejecting H0 when n = 10 and the true θ equals 1/2?

What is this probability when n = 33?

(e) Use the data given at the start of this exercise and test H0. Conclude.

Exercise 5. (Discrete time model for a stock price). Suppose that St is the price

of a stock (or some other asset), and that we observe St at discrete times

a = t0 < t1 < . . . < tn−1 < tn = b.

With out loss of generality, we can assume that a = 0 and that b = 1. We also assume

that the times between the observation times, which we denote by ∆n, are the same for

all observations times, that is,

∆n = tj − tj−1 =
1

n
, for j = 1, . . . , n,

so that tj = j/n for j = 1, . . . , n. Let ξt1 , . . . , ξtn be i.i.d. standard normal random

variables, i.e. ξi ∼ N(0, 1), and for j = 1, . . . , n define

Ztj = (∆n)1/2
j∑
i=1

ξti .

Let Stj be the price of a stock (or some asset) at time tj . Our model for the stock price is

Stj = S0 exp(µtj + σZtj ), for j = 1, . . . , n, (5)

where µ ∈ (−∞,∞) is an unknown drift parameter, σ > 0 is also unknown, and σ2 is

referred to as the volatility of the stock price, and S0 = St0 is the price of the stock at
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Figure 3. A simulated path of the price process Stj in (5) with n = 10 000,

µ = 0.123, and σ =
√

0.02.

the start of the observation window, that we assume to be fixed and known. Define the

returns on a stock over a one unit time interval as

R(tj) =
Stj − Stj−1

Stj−1

, for j = 1, . . . , n.

We will also need the log-price process Ytj defined by

Ytj = log(Stj ), for j = 0, . . . , n.

(a) Set S0 = 17, µ = 0.123, and σ = 0.02, and simulate one path of the stock price Stj
for j = 1, . . . , 10 000. The plot in Figure 3 is one example of what your plot might

look like.

(b) Graph the two functions f1(r) = r and f2(r) = log(1 + r) for −0.99 ≤ r ≤ 0.99 in

one and the same plot (do this in Matlab, of course). Based on your plot, explain

why

Ytj − Ytj−1 ≈ R(tj), (6)

most of the time, when tj and tj−1 are not too far from each other, and the stock

price is not too volatile.

(c) The approximation in (6) makes it easier to work statistically with actual stock

data. Show that

Ytj − Ytj−1 ∼ N(µ∆n, σ
2∆n), for j = 1, . . . , n,

and explain why they are independent. In view of (6), this result says that the

returns R(t1), . . . R(tn) are independent and (approximately) normally distributed.

In reality they might not be, but under the model in (5), they are.
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(d) A natural estimator for the drift parameter µ is

µ̂n =
1

n∆n

n∑
j=1

(Ytj − Ytj−1).

Show that µ̂n is unbiased for µ. A problematic thing about µ is that it cannot be

consistently estimated. To see that µ̂n cannot be consistent, compute its variance.

(e) In view of (d), it is perhaps surprising that the volatility σ2 can be consistently

estimated. An estimator that is consistent for σ2 is the realised volatilty,

σ̂2n =
n∑
j=1

(Ytj − Ytj−1)2.

Write

σ̂2n = µ2∆n + 2µσ∆3/2
n

n∑
j=1

ξtj + σ2∆n

n∑
j=1

ξ2tj ,

and use this expression combined with Property PLIM.2 (Wooldridge (2019, p. 723)

and Lemma 5.2 in the Lecture notes, in particular Remark 5.3) to show that

σ̂2n
p→ σ2, as n→∞,

meaning that the realised volatility is consistent for the true volatility.

Exercise 6. (A stock and an index) This exercise builds on the previous one. Suppose

that for equidistant times

0 ≤ t0 < t1 < · · · < tn = 1,

we observe a stock price Stj and some index Ctj (the SP-500, for example). As a model

for these two we take

Stj = S0 exp(µStj + σSZtj ), and Ctj = C0 exp(µCtj + σCWtj ),

for j = 1, . . . , n, with σS > 0 and σC > 0, where

Ztj = ∆1/2
n

j∑
i=1

ξti , and Wtj = ∆1/2
n

j∑
i=1

ηi,

with

ηi = ρξti + (1− ρ2)1/2εti , ρ ∈ (−1, 1), for i = 1, . . . , n,

and ξt1 , . . . , ξtn , εt1 , . . . , εtn are i.i.d. standard normal random variables. Define

Ytj = logStj , and Xtj = logCtj , for j = 0, . . . , n.

We want to say something about the relation between the stock price and the index.

(a) Show that

Cov(ξtj , ηtj ) = E [ξtjηtj ] = ρ, for j = 1, . . . , n.

(b) Explain why Ztj − Ztj−1 ∼ N(0,∆n) for j = 1, . . . , n, and that these are inde-

pendent; and that Wtj −Wtj−1 ∼ N(0,∆n) for j = 1, . . . , n, and that these are

independent.
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(c) Show that for j = 1, . . . , n,

Cov(Ztj − Ztj−1 ,Wtj −Wtj−1) = ∆nρ,

and that

Cov(Ytj − Ytj−1 , Xtj −Xtj−1) = ∆nσSσCρ.

(d) An estimator for σSσCρ is

ĉovn =

n∑
j=1

(Xtj −Xtj−1)(Ytj − Ytj−1).

Write

ĉovn = µSµC∆n + µS∆3/2
n

n∑
j=1

ηtj + µC∆3/2
n

n∑
j=1

ξtj + σSσC∆n

n∑
j=1

ξtjηtj ,

and mimic the argument from Ex. 5(e) to show that

ĉovn
p→ σSσCρ,

as n→∞.

(e) Consider the function

g(β) =
n∑
j=1

{(Ytj − Ytj−1)− β(Xtj −Xtj−1)}2.

Show that the minimiser β̂n of this function is (the least squares estimator)

β̂n =

∑n
j=1(Xtj −Xtj−1)(Ytj − Ytj−1)∑n

j=1(Xtj −Xtj−1)2
=

ĉovn
σ̂2C,n

,

where σ̂2C,n =
∑n

j=1(Xtj −Xtj−1)2.

(f) Explain why β̂n is consistent for ρσS/σC , that is

β̂n
p→ ρ

σS
σC

, as n→∞.

Hint: Use the result from Ex. 5(e) as it applies to σ̂2C,n, the result from (d), and

Property PLIM.2 (Lemma 5.2 in the Lecture notes).

(g) Propose an estimator, ρ̂n say, that is consistent for ρ. Hint: You will, I think, need

both PLIM.1 and PLIM.2 to argue that your estimator is consistent.
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