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Solutions to Ex. 1. (a) The two hypotheses about p = Pr(coin showing heads) are

H0 : p =
1

2
, vs. HA : p 6= 1

2
.

(b) The probability og getting the sequence in (??) is the same as getting any other

sequence, namely
1

26
=

1

64
= 0.015625.

The fact that this probability is small is not evidence against H0. The reason being that

any sequence of six tosses has this probability. For example, the probability under H0

of getting H,T,H, T,H, T – which definitely looks like something that could have been

produced by a fair coin, is also 1/26. (c) The number of different sequences you can get

in six tosses is 64. Make a drawing like the following and connect the outcomes in in the

first row to the two below, and so on (this corresponds to three tosses),

T H

H T H T

H T H T H T H T

and you quickly realise that the number of possible sequences is

2number of tosses.

There are therefore 26 = 64 different sequences of heads and tails that you can get i six

tosses. (d) There are two types of sequence that are just as surprising as the the one

in (??): All the sequences that contain one tail and seven heads:

T H H H H H

H T H H H H

HH T H H H

HHH T H H

H HHH T H

H H HHH T
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As you can see, there are six of these. But under H0, you would be just as surprised by

H T T T T T

T H T T T T

T T H T T T

T T T H T T

T T T T H T

T T T T T H

and you would be even more surprised by

HHHHHH and T T T T T T

Add this up and get 14. (e) The probability is getting a sequence that is just as or even

more surprising than the sequence in (??) is therefore

14

64
=

7

32
= 0.21875.

This probability is what is commonly called a p-value, and if you are testing your H0 with

a 0.05 threshold, you do not reject H0.

Solutions to Ex. 2. (a) Prove Lemma 1 from the lecture: If X ∼ N(a, b2), then

X − a
b
∼ N(0, 1).

Since X ∼ N(a, b2), we know that its cdf is

Pr(X ≤ x) =

∫ x

−∞

1√
2πb

exp{−1

2

(y − a
b

)2} dy.

To find the distribution of (X − a)/b, we find its cdf.

Pr(
X − a
b
≤ z) = Pr(X ≤ bz + a) =

∫ bz+a

−∞

1√
2πb

exp{−1

2

(y − a
b

)2} dy

=

∫ z

−∞

1√
2π

exp(−w2/2) dw = Φ(z),

substituting w = (y − a)/b, so that dy = bdw, and w → −∞ when y → −∞, and w = z

when y = bz + a.

(b) If X ∼ N(a, b2), then

Pr(X ≤ x) = Pr
(X − a

b
≤ x− a

b
) = Φ

(x− a
b

)
,

using the result from (a).

(c) Let X1, . . . , Xn be i.i.d. random variables with the N(µ, σ2) distribution. We know

from Lemma 7.2 in the lecture notes that a linear combination of independent normally

distributed random variables, is a normally distributed random variable. The empirical

average X̄n = (1/n)
∑n

i=1Xi is a linear combination of the X1, . . . , Xn, and therefore has
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a normal distribution. Its expectation is E X̄n = µ, and Var(X̄n) = σ2/n, and we conclude

that

X̄n ∼ N(µ, σ2/n).

It also follows from Lemma 7.2 that

X̄n − µ ∼ N(0, σ2/n).

In that lemma, set all the γi = 0, except one of them, and you’ll see it. Finally, that

X̄n − µ
σ/
√
n
∼ N(0, 1),

follows from (a), by setting a = µ and b2 = σ2/n.
(d) Since X̄n ∼ N(µ, σ2/n), the claim is just a reformulation of (b). Set a = µ and
b2 = σ2/n.
(e) The matlab code is

z = 1.645;

normcdf(-z,0,1)

1 - normcdf(z,0,1)

norminv(normcdf(-z,0,1),0,1)

norminv(normcdf(z,0,1),0,1)

(f) A 90 percent confidence interval for µ is

[X̄n − Φ−1(0.95)
σ√
n
, X̄n + Φ−1(0.95)

σ√
n

].

Solutions to Ex. 3.

H0 : θ ≥ θnox, vs. HA : θ < θnox

(a) We can only control one of the error-probabilities, and we construct our hypotheses

so that we control the probability of rejecting a true null-hypothesis. We see it as more

serious to tell people to swim when the water is noxious, than telling them to stay at home

when the water is fine. Therefore, the hypotheses are formulated as above.

(b) A test for the null-hypothesis is: Reject H0 if

X̄n − θnox ≤ cn,

for some number cn. The cn ensuring that the probability of rejecting H0 when E [X1] =

θ = θnox is 0.025, is

cn =
σΦ−1(0.025)√

n
= −σ1.96√

n
.

To see this, we do our computations under the hypothesis that θ = θnox, then

Prθnox(X̄n − θnox ≤ cn) = Prθnox
(
X̄n − θnox ≤

σΦ−1(0.025)√
n

)
= Prθnox

(√
n(X̄n − θnox)/σ ≤ Φ−1(0.025)

)
= Φ(Φ−1(0.025)) = 0.025,
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where we use that
√
n(X̄n − θnox)/σ ∼ N(0, 1) when θ = θnox. As we are soon to see,

Prθ(X̄n − θnox ≤ cn) ≤ 0.025 whenever θ ≥ θnox.

(c) Find an expression for the power function

power(θ) = Prθ(X̄n − θnox ≤ cn) = Prθ(X̄n − θ + θ − θnox ≤ cn)

= Prθ(X̄n − θ ≤ cn − (θ − θnox))

= Prθ(
√
n(X̄n − θ)/σ ≤

√
ncn/σ −

√
n(θ − θnox)/σ)

= Φ
(
Φ−1(0.025)−

√
n(θ − θnox)/σ

)
.

where we use that
√
n(X̄n − θ)/σ ∼ N(0, 1) when EX1 = θ.

(d) Here is Matlab code used to graph the power function.

n = 10;

theta_nox = 0.234;

sigma2 = 1.23;

theta = linspace(theta_nox - 2,theta_nox + 2,500);

alpha = 0.025

power = normcdf( norminv(alpha) - sqrt(n)*(theta - theta_nox)/sqrt(sigma2));

plot(theta,power,"LineWidth",2)

ylabel("Power");xlabel("theta");

hold on

plot([min(theta),max(theta)],[alpha,alpha])

plot([theta_nox,theta_nox],[0,1])

Solutions to Ex. 4. We have i.i.d. random variables X1, . . . , Xn with known variance 1,

but do not know what their expectation E [X1] = θ is. Test the hypothesis that

H0 : θ = 0,

versus the alternative HA : θ 6= 0.

(a) Under H0, that is, when θ = 0,
√
nX̄n ∼ N(0, 1). With

cn =
Φ−1(0.95)√

n
.

we compute the probability of rejecting H0 when H0 is true.

Pr0(reject H0) = Pr0(X̄n ≤ −cn or X̄n ≥ cn) = Pr0(X̄n ≤ −cn) + {1− Pr0(X̄n ≤ cn)}
= Pr0(

√
nX̄n ≤ −

√
ncn) + {1− Pr0(

√
nX̄n ≤

√
ncn)}

= Φ(−
√
ncn) + {1− Φ(

√
ncn)} = 2Φ(−

√
ncn)

= 2Φ(−Φ−1(0.95)) = 2Φ(Φ−1(0.05)) = 2× 0.05 = 0.10,
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where we use the symmetry of the normal distribution several times.

(b) The power function is

Prθ(reject H0) = Prθ(X̄n ≤ −cn or X̄n ≥ cn) = Prθ(X̄n ≤ −cn) + {1− Prθ(X̄n ≤ cn)}
= Prθ(

√
n(X̄n − θ) ≤ −

√
n(cn + θ)) + {1− Prθ(

√
n(X̄n − θ) ≤

√
n(cn − θ))}

= Φ(−
√
n(cn + θ)) + 1− Φ(

√
n(cn − θ))

= Φ(−Φ−1(0.95)−
√
nθ)) + 1− Φ(Φ−1(0.95)−

√
nθ).

(c) Here is Matlab code to plot the power function for n = 10 and for n = 33.

theta = linspace(-2,2,500);

% I split it up to make it easier to read

pwr10_1 = normcdf(-norminv(0.95) - sqrt(10)*theta);

pwr10_2 = 1 - normcdf(norminv(0.95) - sqrt(10)*theta);

power10 = pwr10_1 + pwr10_2;

pwr33_1 = normcdf(-norminv(0.95) - sqrt(33)*theta);

pwr33_2 = 1 - normcdf(norminv(0.95) - sqrt(33)*theta);

power33 = pwr33_1 + pwr33_2;

plot(theta,power10,"LineWidth",2)

ylim([0,1]);ylabel("Power");xlabel("theta");

hold on

plot(theta,power33,"LineWidth",2)

plot([min(theta),max(theta)],[0.1,0.1])

(d) Compute the two probabilities in Matlab

theta = 1/2

pwr10_1 = normcdf(-norminv(0.95) - sqrt(10)*theta);

pwr10_2 = 1 - normcdf(norminv(0.95) - sqrt(10)*theta);

power10 = pwr10_1 + pwr10_2 % 0.4752

pwr33_1 = normcdf(-norminv(0.95) - sqrt(33)*theta);

pwr33_2 = 1 - normcdf(norminv(0.95) - sqrt(33)*theta);

power33 = pwr33_1 + pwr33_2 % 0.8902

Which means that Pr1/2(reject H0) = 0.4752 when n = 10, and it is Pr1/2(reject H0) =

0.8902 when n = 33. An increasing sample size makes our test more powerful: The prob-

ability that we detect that H0 is false increases.

(e)

x = [-0.1887 -0.3978 2.7470 0.4135 0.1691 1.6996 1.2608 0.1342 -0.1759 0.4977];

n = length(x);

cn = norminv(0.95)/sqrt(n);

(mean(x) <= -cn)|(mean(x) >= cn) % is True
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Since X̄n = 0.6159 ≥ Φ−1(0.95)/
√

10 = 0.5201, we reject the null-hypothesis at the 10

percent significance level.

Solutions to Ex. 5. (a)

n = 10^4;

tt = linspace(1/n,1,n);

Delta = 1/n;

xi = normrnd(0,1,1,n);

Zt = sqrt(Delta).*cumsum(xi);

% Experiment with this

mu = 0.123;

sigma = sqrt(0.02);

S0 = 17;

St = S0.*exp(mu.*tt + sigma.*Zt);

plot(tt,St,"Linewidth",1.41)

(b)

rr = linspace(-0.99,0.99,10^3)

plot(rr,rr,"Linewidth",1.41)

hold on

plot(rr,log(rr + 1),"Color","r","Linewidth",1.41)

From the plot made in this matlab-script we see that rr ≈ log(1 + rr) when rr is close

to zero. Therefore, when the returns R(tj) = (Stj − Stj−1)/Stj−1 (perhaps because the

intervals [tj−1, tj ] are small or the volatility is not too large)

Ytj − Ytj−1 = logStj − logStj−1 = log
Stj
Stj−1

= log
Stj − Stj−1 + Stj−1

Stj−1

= log
(Stj − Stj−1

Stj−1

+ 1
)

= log(R(tj) + 1) ≈ R(tj).

(c) We see that

Ytj − Ytj−1 = µ∆n + σ∆1/2
n ξtj

where ξtj ∼ N(0, 1), so by Lemma 7.2 in the Lecture notes Ytj − Ytj−1 is normally dis-

tributed. Its expectation and variance

E [Ytj − Ytj−1 ] = µ∆n + σ∆1/2
n E [ξtj ] = µ∆n,

Var(Ytj − Ytj−1) = Var(σ∆1/2
n ξtj ) = σ2∆nVar(ξtj ) = σ2∆n.

(d) The estimator µ̂n is

µ̂n =
1

n∆n

n∑
j=1

(Ytj − Ytj−1) =
n∑
j=1

(Ytj − Ytj−1) = Ytn − Yt0 = µtn + σZtn = µ+ σZtn ,
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since n∆n = n/n = 1, and tn = 1. The expectation of Ztn is zero, so E µ̂n = µ, it is

unbiased. But

Var(µ̂n) = σ2Var(Ztn) = σ2Var(∆1/2
n

n∑
i=1

ξti) = σ2∆nn = σ2,

is the same for all n, so µ̂n cannot be consistent.

(e) We are to show that the realised volatilty,

σ̂2n =

n∑
j=1

(Ytj − Ytj−1)2.

is consistent for the volatility σ2. By inserting Ytj−Ytj−1 = ∆nµ+σs∆
1/2ξtj and expanding

the square, we find

σ̂2n = µ2∆n + 2µσ∆3/2
n

n∑
j=1

ξtj + σ2∆n

n∑
j=1

ξ2tj ,

Let’s look at this term by term. Recall that ∆n = 1/n, so µ2∆n → 0 as n→∞. For the

second term

2µσ∆3/2
n

n∑
j=1

ξtj = 2µσ
1√
n

1

n

n∑
j=1

ξtj
p→ 0,

by the Law of large numbers, because the ξt1 , . . . , ξtn are i.i.d. N(0, 1), so (1/n)
∑n

j=1 ξtj →p

E [ξt1 ] = 0 by the Law of large numbers, and 1/
√
n → 0. The claim then follows from

PLIM.2. The last term is

σ2∆n

n∑
j=1

ξ2tj = σ2
1

n

n∑
j=1

ξ2tj
p→ σ2,

because ξ2t1 , . . . , ξ
2
tn are i.i.d. with expectation 1 and variance 2. Then (1/n)

∑n
j=1 ξ

2
tj →p

E [ξ2t1 ] = 1 by the LLN. We can now use Property PLIM.2 (Wooldridge (2019, p. 723) and

Lemma 5.2 in the Lecture notes, in particular Remark 5.3), and conclude that σ̂2n →p σ
2.

Solutions to Ex. 6. This exercise builds on the previous one.

(a) We have that ξtj is a standard normal, and that

ηtj = ρξtj + (1− ρ2)1/2εtj ,

with εtj a standard normal independent of ξtj . Then

Cov(ξtj , ηtj ) = E [ξtjηtj ]− E [ξtj ] E [ηtj ] = E [ξtjηtj ]

= E [ξtj (ρξtj + (1− ρ2)1/2εtj )] = ρE [ξ2tj ] + (1− ρ2)1/2E [ξtj εtj ]

= ρE [ξ2tj ] = ρ,

because E [ξtj εtj ] = E [ξtj ] E [εtj ] = 0 by independence, and E [ξ2tj ] = Var(ξtj ) = 1.

(b) Ztj − Ztj−1 = ∆
1/2
n
∑j

i=1 ξti − ∆
1/2
n
∑j−1

i=1 ξti = ∆
1/2
n ξtj . Since ξtj ∼ N(0, 1), the

random variable ∆
1/2
n ξtj must also have a normal distribution (by Lemma 7.2 in the
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Lecture notes). Its expectation is E [∆
1/2
n ξtj ] = ∆

1/2
n E [ξtj ] = 0, and its variance is

Var(∆
1/2
n ξtj ) = ∆nVar(ξtj ) = ∆n. Therefore ∆

1/2
n ξtj ∼ N(0,∆n). Since ξt1 , . . . , ξtn are

independent, so are ∆
1/2
n ξt1 , . . . ,∆

1/2
n ξtn . The same argument applies to the Wtj −Wtj−1 .

(c) We have that Ztj − Ztj−1 = ∆
1/2
n ξtj and that Wtj −Wtj−1 = ∆

1/2
n ηtj . Then

Cov(Ztj − Ztj−1 ,Wtj −Wtj−1) = Cov(∆1/2
n ξtj ,∆

1/2
n ηtj ) = ∆nE [ξtjηtj ] = ∆nρ,

where we use the result from (a). Moreover, Ytj − Ytj−1 = ∆nµS + σS∆
1/2
n ξtj , and Xtj −

Xtj−1 = ∆nµC + σC∆
1/2
n ηtj . Then E [Ytj − Ytj−1 ] = ∆nµS , and E [Xtj −Xtj−1 ] = ∆nµC ,

so

Cov(Ytj − Ytj−1 , Xtj −Xtj−1) = E (Ytj − Ytj−1 −∆nµS)(Xtj −Xtj−1 −∆nµC)

= E [σS∆1/2
n ξtjσC∆1/2

n ηtj ] = ∆nσSσC E [ξtjηtj ] = ∆nρσSσC ,

using the result from (a).

(d) An estimator for σSσCρ is

ĉovn =

n∑
j=1

(Xtj −Xtj−1)(Ytj − Ytj−1).

Write

ĉovn = µSµC∆n + µS∆3/2
n

n∑
j=1

ηtj + µC∆3/2
n

n∑
j=1

ξtj + σSσC∆n

n∑
j=1

ξtjηtj .

To show that ĉovn →p ρσSσC , we look at this expression term by term, and use PLIM.2.

The first term µSµC∆n = µSµC/n→ 0. The second term

µS∆3/2
n

n∑
j=1

ηtj = µS
1√
n

1

n

n∑
j=1

ηtj
p→ 0,

by the LLN, because ηt1 , . . . , ηtn are i.i.d. standard normals, so (1/n)
∑n

j=1 ηtj →p E ηt1 =

0, and similarly µC∆
3/2
n
∑n

j=1 ξtj →p 0. For the final term

σSσC∆n

n∑
j=1

ξtjηtjσSσC
1

n

n∑
j=1

ξtjηtj
p→ ρσSσC .

This is because ξt1ηt1 , . . . , ξtnηtn are i.i.d. random variables with mean ρ and finite variance.

The LLN therefore gives that (1/n)
∑n

j=1 ξtjηtj →p E [ξt1ηt1 ] = ρ. It now follows from

PLIM.2 that ĉovn →p ρσSσC .

(e) This is about finding the least squares estimator. Differentiate g(β), set the derivative

equal to zero, and solve for β.

(f) We have the estimator

β̂n =

∑n
j=1(Xtj −Xtj−1)(Ytj − Ytj−1)∑n

j=1(Xtj −Xtj−1)2
=

ĉovn
σ̂2C,n

,
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where σ̂2C,n =
∑n

j=1(Xtj −Xtj−1)2. From Ex. 5 we know that σ̂2C,n →p σ
2
C , and from (d)

that ĉovn →p ρσSσC . Property PLIM.2 then yields

β̂n =
ĉovn
σ̂2C,n

p→ ρσCσS
σ2C

=
ρσS
σC

.

(g) A consistent estimator for ρ is

ρ̂n =

(∑n
j=1(Xtj −Xtj−1)2∑n
j=1(Ytj − Ytj−1)2

)1/2

β̂n.

Since
∑n

j=1(Xtj − Xtj−1)2 →p σ
2
C and

∑n
j=1(Ytj − Ytj−1)2 →p σ

2
S , their ratio tends in

probability to σ2C/σ
2
S , using PLIM2. Since g(x) = x1/2 is a continuous function, PLIM.1

then gives that (∑n
j=1(Xtj −Xtj−1)2∑n
j=1(Ytj − Ytj−1)2

)1/2
p→ σC
σS
.

We known from the previous exercise that β̂n →p ρσS/σC , so by PLIM.2 we conclude that

ρ̂n
p→ σC
σS

ρσS
σC

= ρ.
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