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EMIL A. STOLTENBERG

Intro: Here is a short summary of some results mentioned in lecture today. I’ll soon write
this more fully out in the lecture notes. If Xy 1, X1 2, X2 1, X229 are random variables, and

X111 Xu 2> <E [(X11] E[Xy 2])
X = ’ ' then E|[X] = ’ ’ .
<X2,1 X2 ] E[X21] E[Xap]

The same applies to matrices of higher dimensions, and they need not be square. If
Y = (Y1,...,Y),) is a vector of random variables, then its n x n covariance matrix is
defined by
Var(Y) =E[Y —E[Y])(Y - E[Y])"].
If A is a matrix containing constants only (not rv’s), of dimensions such that AY makes
sense, then
E[AY] = AE[Y], and Var[AY]= AVar(Y)A".

Here is a useful lemma about linear combinations of normals. If X ~ N,(u1,I'1) and
Y ~ N, (u2,T2), all the elements of X are independent of all the elements of Y, and A
and B are p X n matrices of constants, while c is a p vector of constants, then

AX 4+ BY + ¢~ Np(Au1 + Bug + ¢, AT1A* + BI'», BY). (1)

Recall also that independence implies covariance equal to zero. When the random variables
involved are normal, the reverse implication also holds: covariance equal to zero implies

independence. So saying that Z1, ..., Z, are i.i.d. standard normals, is the same as saying
that
Z
Z=| 1| ~Nu0,1,),
Zn

where the 0 is supposed to be understood n dimensional column vector of zeros, and I, is
the n x n identity matrix.

Exercise 1. (MULTIPLE REGRESSION IN MATLAB). In this exercise you are to build
your own multiple regression procedure in Matlab. First, we repeat some of the matrix
computations we did in class, then we implement it all in Matlab.

Consider the model

Yi=po+ frxig + -+ Bp—1xip—1 +&;, fori=1,...,n, (2)
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where €1,...,&, are i.i.d. with expectation zero and variance o2, all the covariates are
fixed numbers (not rv’s), and n > p. Write
Bo 1
B1 Ti 1 )
8= . , and x; = . , fori=1,...,n,
Bp-1 Tip—1

for the column vector of regression coefficients and of covariates, respectively. The model
in can then be expressed as

Y; =aif+e, fori=1,...,n. (3)

There is a third way to write our model. For that we need

Y; 1z - mipa €1
Yy 1 @1 -+ Top €9
Y = : , X = , and e= ,
Yo 1 zp11 0 Tp—1p— En—1
Y, 1 Tn,1 te Tn,p—1 En

where the n x p matrix X is often called the design matriz. With this notation, the model
in can be expressed as
Y = Xf+e, (4)

where Y, X, 8, and ¢ are as defined above, end the elements of ¢ are i.i.d. rv’s with

expectation zero and variance o2.

The least squares estimator B = (30,31,...,3p_1)t of B = (Bo,B1,-.-,Bp-1)" is the

minimiser of the function
n

9(8) = 90, Br,- -, Bp1) = S (Yi — alB)2 = (Y — XB)H(Y — XB).

i=1
We will assume that the px p matrix X*X is invertible. (Assumption MLR.3 in|Wooldridge
(2019} p. 80) combined with the n > p assumption imply invertibility of X*X).

(a) As in Lecture 8, start by finding the partial derivatives of g(fo, f1, ..., Bp—1), set
these equal to zero, and convince yourself that the system of p equations you get
can be expressed as

n 0
YoalYi—aif) =X (Y -XxB) = ||,
i=1 0

dropping the —2 in front. Hint: X'X =Y 1 | z;xl.
(b) Solve the system of equations in (a) and obtain

By = (X'X)LX'Y.
Use this to show that
E[B, =8, and Var(8) = o2(X'X)"".
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Note that this shows that Bo,fj\l, el Ap_l are all unbiased. Also, the variance
Var(;) is the j'th diagonal element of o?(X*X)~1,
An unbiased estimator of o2 is

n

52— S (-t (5)

n=ri3

To show that this estimator is unbiased it helps to know that the trace of a matrix
is the sum of its diagonal elements. For example,

A= (al’l a172> , then the trace of Ais tr(A4) =a11 + az2.
a1 a2

Also, if A, B, and C' are matrices
tr(ABC) = tr(BCA) = tr(CAB).

Thus, for example
D (XX e = r(X(XTX) XY = (XX (XX) ) = t2(T,) =p.
=1

Try to show that 2 is unbiased. One way of showing it is included in Appendix
Download the dataset hw8.txt, read it into Matlab, and construct the design
matrix. Here we work with the model in with p = 3. Here is code

hw8 = readtable("hw8.txt");

y = hw8.y; x1 = hw8.x1;x2 = hw8.x2;

n = length(y);

X = [1 + zeros(n,1),x1,x2]; % The design matrix
p = length(X(1,:)); % Useful later

Implement the estimators for 8 and for ¢ that you found above. To multiply two
matrices in Matlab use *. For the transpose, use transpose(), and use inv() for
the inverse.
Before continuing, you should make scatter plots of the data, both y against x1,
and y against x2.
The standardised coefficients

MNN(O,I), for j =0,1,...,p—1,

se(3;)
when ¢ ~ N, (0,0%1,), or approximately so when the normality assumption is
dropped, given that n is sufficiently big. Here, se(gj) is the square root of j+ 1’'th
diagonal element of o2(X®X) ™!, where you need to estimate o2. In Matlab diag()
gives you the diagonal elements of a square matrix.

The default p-values returned by Matlab are the p-values testing Hy: 8; = 0

against its two-sided alternative, for j = 0,1,...,p — 1. That is, for the observed
value of Bj/se(gj), the p-value is

Pr(|Z|> |B;/se(B))]) = Pr(1Z|= |]).
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B ose(B) oz Pr(Z>|z))
-0.405 0.103 -3.936 0.000
1.245 0.113 11.011 0.000

0.044 0.107 0.409 0.682
TABLE 1. Regression results from analysing the data in hw8.txt.

where Z is a standard normal random variable, and z; is the observed value
Bj /se(gj). In Matlab Z is taken to have a t-distribution with n — p degrees
of freedom. You can use normcdf (z) for the cdf of the standard normal, and
tcdf (z,n-p) for the cdf of the t-distribution with n —p degrees of freedom. When
n — p is sufficiently big, normcdf (z) and tcdf (z,n-p) will be very close. They
are both symmetric, i.e. 1-normcdf(z) equals normcdf (-z), and similarly for
tcdf (z,n-p).

(g) Do some Matlab coding (and googling) to make a nice table of your output that
is sent to the terminal. Here is the table I get from running a regression on the
hw8.txt dataset

betahat se z p-value

-0.405 0.103 -3.936 0
1.245 0.113 11.011 0
0.044 0.107 0.409 0.682

This is nice to look at in the Matlab terminal, but on the group home exam you should
format the table in you favourite text processing program (Word, Latex, etc.), and make
it look somewhat like Table [l

Exercise 2. (THE BIVARIATE NORMAL DISTRIBUTION). Let Z; and Zs be independent
standard normal random variables. With Z = (73, Z5)*, this means that Z ~ N(0, I5).
Consider the matrix A and the vector u, given by

Y Xt 0 ([
A_<U2p 02(1—p2)1/2>’ and M_<uz>’

where 1, o € R, 01,02 > 0, and —1 < p < 1. Define

X o121 > <M1>
—AZ +p= + .
<Y> : (02{/’21 + (1= p*)225} 142
(a) Use the fact in Eq. to argue that

X 1 o} pO102
(7)) (s )
w2 po102 0y

that is, (X,Y’) has a bivariate normal distribution. It suffices to find E [X], E[Y],
Var(X), Var(Y), and Cov(X,Y).
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(b) Show that

P Cov(X,Y)
EY | X] = —(X — = — (X -
Y | X] = p2 +P01( p1) = p2 + Var(X) (X — ),
then you can argue that by symmetry,
Cov(X,Y)

01
E[X|Y]= _ Ty ),
(X [Y] =+ Var(y) M + p@( 112)

In this exercise and the ones that follow, the claims are trivial if p = 0, so we

assume that p # 0.
(c) The conditional variance of Y given X is

Var(Y | X) =E[Y? | X] - (E[Y | X])%
Show that with the bivariate normal (X,Y’) from (a).
Var(X | Y) =031 — p?), and Var(Y | X) = a3(1 — p?).
Hint: Use the rules of conditional expectation (see e.g. Wooldridge (2019} pp.700—
704), or notes from Lecture 8) to show that

2

o9 o

E[Y? | X] =3+ 2pap (X = ) + PP (X =)+ o5(1 - p?),
i

and use this to find the expression for Var(Y | X). Then argue that by symmetry

we have the expression for Var(X | Y).

Exercise 3. (OMITTED VARIABLE BIAS). Suppose that the true regression model is

=080+ i Xin +B1Xip+e;, fori=1,...,n, (6)
where ey, ..., e, areii.d. standard normals independent of X1 1,..., X, 1 and X1 2,..., X, 2,
while (X711, X12),...,(Xn1,Xy2) is are i.i.d. bivariate normals with distribution
Xin 0 1 p .
) ~N f =1,...,n.
() =) 1)y mrr=nn
For some reason it is impossible to collect data on X 9,..., X, 2, so this variable is not

in your dataset. You decide to estimate 5y and (31 by the estimators Bo and 51 defined as

the minimisers of
n

9(Bo,B1) = > _(Yi = Bo — 1 Xi1)*. (7)

=1
Let X\ = (X11,...,Xn1), and X\ = (X1,...,Xn2), while X® = (x" x{"),
We'll use
Xp1= S zn:Xi,h and X, = 1 Zn:X’i727
n =1 n =1

for the empirical means.

(a) Explain why
E[Y; | (X1, Xi2)] = Bo+ f1Xi1 + f2Xi2.
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(b) Use the Law of large numbers and Properties PLIM.1 and PLIM.2(i) to show that
1< .
=) (Xin — Xn1)® B 1L
n 4
i=1
(c) Use techniques similar to those in (b) to show that
1 ¢ . .
- D (Xig = Xn1)(Xig — Xn2) B p.
i=1

(¢c) Derive the estimator for 31, and show that

2 (Xin = Xn1)(Xig — X o)
21 (Xig — Xna)?
This shows that 51 is biased, and this bias is what is referred to as omitted variable

bias. The fact that X; o was omitted in the estimation, create this bias.
(d) Explain why, when n is really big,

E[B1 | X™] will be close to 1 + Ba2p,

with high probability. Hint: See (b) and (c).
(e) In view of (d), can you think of situations where omitting an independent variable

E[B | X™] =81 + B

from the estimation does not lead to omitted variable bias? In other words, situ-
ation where the model in @ is the true model, but 5; is an unbiased, or nearly
unbiased estimator.

1. OPTIONAL EXERCISES
We will go through these exercises in a lecture or in a TA-session soon.

Exercise 4. (INSTRUMENTAL VARIABLE ESTIMATION). Suppose that the model is the
same as the one given in @ in Ex. |3, and that the independent variables Xio,..., X2
are still not available to us. There is, however, another variable we can collect data on,
namely Zi,...,Z,, and in fact, the X, 1’s are functions of these Z;’s,

Xi1n=7Zi+mn, fori=1,...,n,
where v # 0; the 21, ..., Z, are i.i.d. standard normals and independent of the ny,...,ny,,

independent of the X1 2,..., X, 2, and independent of the €1, ..., e,; while it is in fact the
(m,X12),..., (M, Xp2) that are i.i.d. bivariate normals with distribution

h 0\ (1 p o
()~ (§)- () 7)) dori=n

The Zi,...,Z, are what econometricians refer to as an instrumental variable (IV), and
the idea in I'V-estimation is to replace X; 1 by their predicted values 7,,Z;, where 7, is the
minimiser of the function g1(v) = > ;(X;1—7Z;)?. The instrumental variable-estimators
for By and f1, say BO,iV and El,iv, are the minimisers of the function

n

92(B0, B1) = > _(Yi — Bo — BrAnZi)*.

=1
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Compare this function to the function given in @, and notice how we have replaced each
Xi1 by AnZ;.
(a) Read carefully through the assumptions we make about our model in this exercise.
(b) Derive an expression for 7,, and show that 7, is consistent for . Hint: Use
Properties PLIM.2(i) and PLIM.2(iii).
(¢) Find an expression for the instrumental variable estimator of 3.
(d) Make sure you understand why

1 _ _ _
= (Zi—Za)ii 20, =Y (Zi—Zn)Xiz 50, =Y (Zi— Zn)ei >0,
i i=1 i=1
and (1/n) Y0 (Zi — Zy)? —p 1.
(e) Use the expression you found in (c), and write

3=t B 351 (Zi = Zn){Brni + PaXin + &i}
Y :Y\n ﬁn Z?zl(zi - Zn)2

(e) Use the expression in (e), combined with the results from (d) and the Properties
PLIM.1 and PLIM.2 to show that

> P
Biiv — Bi.

In other words, 3y is consistent for 5.

Exercise 5. (TESTING THE ). This exercise builds on Ex. 5 and Ex. 6 in Homework 7.
Do those two exercises before you continue with this one. In this exercise we work with a
stock Sy, and an index Cy; for j = 0,1,...,n. The model for these two is the same as in
Ex. 6 in Homework 7, and all the notation is the same as well. In that exercise we showed
that the estimator
- Z?:l(th - th—l)(Y;fj - Y;fj_l)
" Z;'l:l(th - th—1)2 7

is consistent for pog/oc. We now want to test the null-hypothesis p = 0 against its two-

sided alternative. You can think about what p = 0 means in the context of the Capital
asset pricing model (CAPM). Since g > 0 and o > 0 we might as well just test,

Hy: posoc =0, vs. Ha:pogoo # 0.

To test this hypothesis we need to find the limit distribution of

n

C/OVTZ = Z(th - Xt]'_l)()/t]' - )/;f]'_l)a
J=1

as n — oo. The estimator cov,, was defined in Ex. 6 of Homework 7, and in that exercise
you also find an expression for it that you should use in this exercise. To find the limit dis-
tribution of ¢ov,, we need to know about the Cramér—Slutsky rules. They are summarised

in Appendix [B]
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(a) Explain why &, m,, ..., &, M, are ii.d. random variables, and use Ex. 2(b) to show
that

E [ﬁtﬂ?tj] = p-
Hint: E [ftﬂ?tj] =E {E [ﬁtﬂ?tj | é-tj]} =E {é-tjE [ntj ’ gtj:l}'
(b) Show also that
Var(§me,) =1+ 0.
Hint: Write Var(§,my;) = E| fjnfj] — (E[&;m,])?, and use that E [5?7_] = 3, and
perhaps also that E [{f‘]] = 0 (these are results about the moments of the normal
distribution.
(¢) Explain why (a) and (b) entail that
VARSI &y — p)
V14 p?
Hint: See Theorem 5.5 (the CLT) in the Lecture notes.
(d) Use the Cramér—Slutsky rules to argue that

4 N(0,1).

—1/2 ,—
A, / (covy, — posoc) iN(O,l),
osoc/1+ p?
as n — oo.

(e) Let p, be the estimator you found in Ex. 6(g). Importantly p,, is consistent for p.
Propose also consistent estimators og,, and oc,, of og and o¢, respectively. Now,

use the Cramér—Slutsky rules and Property PLIM.2 to argue that

A, V2(@v, — posoc)

—— —~ — N(0,1),
0Sn0Cn\ 1+ p%
as n — oo.
(f) Consider the test that rejects Hy if
A, e, A, Peov,
—Cp Or >c

< Z Cn;,
0Sn0Cn\ 1+ py 0Sn0Cmn\ 1+ py

for some critical value ¢, > 0. Find ¢,, such that
Pr(Type I error) ~ 0.01.

What kind of investor would choose this significance level?

APPENDIX A. G2 IS UNBIASED

The estimator 52 is as defined in (). Write

n

721 = Z(Y% - xiﬁn)Q =

=1 7

(Y; — 2t8,) (Yi — 215,)

M-

Il
3 =

n n

n
=Y HRYi= YV Y N = YV X,
=1 =1 i=1

=1


https://en.wikipedia.org/wiki/Normal_distribution#Moments
https://en.wikipedia.org/wiki/Normal_distribution#Moments
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Then take the expectation,

E[(n—p)e2] =Y E[V?] - E[BLX XS,
=1
=S (@B +n0? B S Baiaify
=1 i=1

n n
— Z ﬁtmimltﬂ +no? —E Z B;xzxﬁgn

i=1 i=1

=n0® —E Y (Bn — B)'zia}(Bn — B)
i=1
= no? — ZE (:Ef(,@n —B))?
i=1
=no? — ZVar (:I:}(Bn —B)) =no? — Zachar (B\n - B)x;
i=1 i=1

n
=no’® —o° ZxE(XtX)_lxi
i=1

=no? — cAtr(X (X' X)X = o?(n — p).

This explains why one divides by n — p when estimating the variance o2.

ApPPENDIX B. CRAMER—SLUTSKY RULES

If X, converges in distribution to a random variable X, and Y, converges in probability
to a constant ¢, then
(i) Xn+Yn 2a X +¢
(ii) XnYn —d XC;
(i) X, /Y, —4 X/c provided ¢ # 0.
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