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Intro: Here is a short summary of some results mentioned in lecture today. I’ll soon write

this more fully out in the lecture notes. If X1,1, X1,2, X2,1, X2,2 are random variables, and

X =

(
X1,1 X1,2

X2,1 X2,2

)
then E [X] =

(
E [X1,1] E [X1,2]

E [X2,1] E [X2,2]

)
.

The same applies to matrices of higher dimensions, and they need not be square. If

Y = (Y1, . . . , Yn) is a vector of random variables, then its n × n covariance matrix is

defined by

Var(Y ) = E [(Y − E [Y ])(Y − E [Y ])t].

If A is a matrix containing constants only (not rv’s), of dimensions such that AY makes

sense, then

E [AY ] = AE[Y ], and Var[AY ] = AVar(Y )At.

Here is a useful lemma about linear combinations of normals. If X ∼ Nn(µ1,Γ1) and

Y ∼ Nn(µ2,Γ2), all the elements of X are independent of all the elements of Y , and A

and B are p× n matrices of constants, while c is a p vector of constants, then

AX +BY + c ∼ Np(Aµ1 +Bµ2 + c, AΓ1A
t +BΓ2B

t). (1)

Recall also that independence implies covariance equal to zero. When the random variables

involved are normal, the reverse implication also holds: covariance equal to zero implies

independence. So saying that Z1, . . . , Zn are i.i.d. standard normals, is the same as saying

that

Z =

Z1
...

Zn

 ∼ Nn(0, In),

where the 0 is supposed to be understood n dimensional column vector of zeros, and In is

the n× n identity matrix.

Exercise 1. (Multiple regression in Matlab). In this exercise you are to build

your own multiple regression procedure in Matlab. First, we repeat some of the matrix

computations we did in class, then we implement it all in Matlab.

Consider the model

Yi = β0 + β1xi,1 + · · ·+ βp−1xi,p−1 + εi, for i = 1, . . . , n, (2)
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where ε1, . . . , εn are i.i.d. with expectation zero and variance σ2, all the covariates are

fixed numbers (not rv’s), and n > p. Write

β =


β0
β1
...

βp−1

 , and xi =


1

xi,1
...

xi,p−1

 , for i = 1, . . . , n,

for the column vector of regression coefficients and of covariates, respectively. The model

in (2) can then be expressed as

Yi = xtiβ + εi, for i = 1, . . . , n. (3)

There is a third way to write our model. For that we need

Y =


Y1
Y2
...

Yn−1

Yn

 , X =


1 x1,1 · · · x1,p−1

1 x2,1 · · · x2,p−1
...

...
...

...

1 xn−1,1 · · · xn−1,p−1

1 xn,1 · · · xn,p−1

 , and ε =


ε1
ε2
...

εn−1

εn

 ,

where the n×p matrix X is often called the design matrix. With this notation, the model

in (2) can be expressed as

Y = Xβ + ε, (4)

where Y , X, β, and ε are as defined above, end the elements of ε are i.i.d. rv’s with

expectation zero and variance σ2.

The least squares estimator β̂ = (β̂0, β̂1, . . . , β̂p−1)
t of β = (β0, β1, . . . , βp−1)

t is the

minimiser of the function

g(β) = g(β0, β1, . . . , βp−1) =
n∑

i=1

(Yi − xtiβ)2 = (Y −Xβ)t(Y −Xβ).

We will assume that the p×p matrix XtX is invertible. (Assumption MLR.3 in Wooldridge

(2019, p. 80) combined with the n > p assumption imply invertibility of XtX).

(a) As in Lecture 8, start by finding the partial derivatives of g(β0, β1, . . . , βp−1), set

these equal to zero, and convince yourself that the system of p equations you get

can be expressed as

n∑
i=1

xi(Yi − xtiβ) = Xt(Y −Xβ) =

0
...

0

 ,

dropping the −2 in front. Hint: XtX =
∑n

i=1 xix
t
i.

(b) Solve the system of equations in (a) and obtain

β̂n = (XtX)−1XtY.

Use this to show that

E [β̂n] = β, and Var(β) = σ2(XtX)−1.
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Note that this shows that β̂0, β̂1, . . . , β̂p−1 are all unbiased. Also, the variance

Var(β̂j) is the j’th diagonal element of σ2(XtX)−1.

(c) An unbiased estimator of σ2 is

σ̂2n =
1

n− p

n∑
i=1

(Yi − xtiβ̂n)2. (5)

To show that this estimator is unbiased it helps to know that the trace of a matrix

is the sum of its diagonal elements. For example,

A =

(
a1,1 a1,2
a2,1 a2,2

)
, then the trace of A is tr(A) = a1,1 + a2,2.

Also, if A, B, and C are matrices

tr(ABC) = tr(BCA) = tr(CAB).

Thus, for example
n∑

i=1

xti(X
tX)−1xi = tr(X(XtX)−1Xt) = tr(XtX(XtX)−1) = tr(Ip) = p.

Try to show that σ̂2n is unbiased. One way of showing it is included in Appendix A.

(d) Download the dataset hw8.txt, read it into Matlab, and construct the design

matrix. Here we work with the model in (2) with p = 3. Here is code

hw8 = readtable("hw8.txt");

y = hw8.y; x1 = hw8.x1;x2 = hw8.x2;

n = length(y);

X = [1 + zeros(n,1),x1,x2]; % The design matrix

p = length(X(1,:)); % Useful later

Implement the estimators for β and for σ2 that you found above. To multiply two

matrices in Matlab use ∗. For the transpose, use transpose(), and use inv() for

the inverse.

(e) Before continuing, you should make scatter plots of the data, both y against x1,

and y against x2.

(f) The standardised coefficients

β̂j − βj
se(β̂j)

∼ N(0, 1), for j = 0, 1, . . . , p− 1,

when ε ∼ Nn(0, σ2In), or approximately so when the normality assumption is

dropped, given that n is sufficiently big. Here, se(β̂j) is the square root of j+ 1’th

diagonal element of σ2(XtX)−1, where you need to estimate σ2. In Matlab diag()

gives you the diagonal elements of a square matrix.

The default p-values returned by Matlab are the p-values testing H0 : βj = 0

against its two-sided alternative, for j = 0, 1, . . . , p − 1. That is, for the observed

value of β̂j/se(β̂j), the p-value is

Pr(|Z|≥ |β̂j/se(β̂j)|) = Pr(|Z|≥ |zj |).
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β̂ se(β̂) zj Pr(Z ≥ |zj |)
-0.405 0.103 -3.936 0.000

1.245 0.113 11.011 0.000

0.044 0.107 0.409 0.682
Table 1. Regression results from analysing the data in hw8.txt.

where Z is a standard normal random variable, and zj is the observed value

β̂j/se(β̂j). In Matlab Z is taken to have a t-distribution with n − p degrees

of freedom. You can use normcdf(z) for the cdf of the standard normal, and

tcdf(z,n-p) for the cdf of the t-distribution with n−p degrees of freedom. When

n − p is sufficiently big, normcdf(z) and tcdf(z,n-p) will be very close. They

are both symmetric, i.e. 1-normcdf(z) equals normcdf(-z), and similarly for

tcdf(z,n-p).

(g) Do some Matlab coding (and googling) to make a nice table of your output that

is sent to the terminal. Here is the table I get from running a regression on the

hw8.txt dataset

betahat se z p-value

_______ _____ ______ _______

-0.405 0.103 -3.936 0

1.245 0.113 11.011 0

0.044 0.107 0.409 0.682

This is nice to look at in the Matlab terminal, but on the group home exam you should

format the table in you favourite text processing program (Word, Latex, etc.), and make

it look somewhat like Table 1.

Exercise 2. (The bivariate normal distribution). Let Z1 and Z2 be independent

standard normal random variables. With Z = (Z1, Z2)
t, this means that Z ∼ N2(0, I2).

Consider the matrix A and the vector µ, given by

A =

(
σ1 0

σ2ρ σ2(1− ρ2)1/2

)
, and µ =

(
µ1
µ2

)
,

where µ1, µ2 ∈ R, σ1, σ2 > 0, and −1 < ρ < 1. Define(
X

Y

)
= AZ + µ =

(
σ1Z1

σ2{ρZ1 + (1− ρ2)1/2Z2}

)
+

(
µ1
µ2

)
.

(a) Use the fact in Eq. (1) to argue that(
X

Y

)
∼ N2

((µ1
µ2

)
,

(
σ21 ρσ1σ2

ρσ1σ2 σ22

))
,

that is, (X,Y ) has a bivariate normal distribution. It suffices to find E [X], E [Y ],

Var(X), Var(Y ), and Cov(X,Y ).
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(b) Show that

E [Y | X] = µ2 + ρ
σ2
σ1

(X − µ1) = µ2 +
Cov(X,Y )

Var(X)
(X − µ1),

then you can argue that by symmetry,

E [X | Y ] = µ1 +
Cov(X,Y )

Var(Y )
= µ1 + ρ

σ1
σ2

(Y − µ2).

In this exercise and the ones that follow, the claims are trivial if ρ = 0, so we

assume that ρ 6= 0.

(c) The conditional variance of Y given X is

Var(Y | X) = E [Y 2 | X]− (E [Y | X])2.

Show that with the bivariate normal (X,Y ) from (a).

Var(X | Y ) = σ21(1− ρ2), and Var(Y | X) = σ22(1− ρ2).

Hint: Use the rules of conditional expectation (see e.g. Wooldridge (2019, pp.700–

704), or notes from Lecture 8) to show that

E [Y 2 | X] = µ22 + 2µ2ρ
σ2
σ1

(X − µ1) + ρ2
σ22
σ21

(X − µ1)2 + σ22(1− ρ2),

and use this to find the expression for Var(Y | X). Then argue that by symmetry

we have the expression for Var(X | Y ).

Exercise 3. (Omitted variable bias). Suppose that the true regression model is

Yi = β0 + β1Xi,1 + β1Xi,2 + εi, for i = 1, . . . , n, (6)

where ε1, . . . , εn are i.i.d. standard normals independent ofX1,1, . . . , Xn,1 andX1,2, . . . , Xn,2,

while (X1,1, X1,2), . . . , (Xn,1, Xn,2) is are i.i.d. bivariate normals with distribution(
Xi,1

Xi,2

)
∼ N2

((0

0

)
,

(
1 ρ

ρ 1

))
, for i = 1, . . . , n.

For some reason it is impossible to collect data on X1,2, . . . , Xn,2, so this variable is not

in your dataset. You decide to estimate β0 and β1 by the estimators β̃0 and β̃1 defined as

the minimisers of

g(β0, β1) =

n∑
i=1

(Yi − β0 − β1Xi,1)
2. (7)

Let X
(n)
1 = (X1,1, . . . , Xn,1), and X

(n)
2 = (X1,2, . . . , Xn,2), while X(n) = (X

(n)
1 , X

(n)
2 ).

We’ll use

X̄n,1 =
1

n

n∑
i=1

Xi,1, and X̄n,2 =
1

n

n∑
i=1

Xi,2,

for the empirical means.

(a) Explain why

E [Yi | (Xi,1, Xi,2)] = β0 + β1Xi,1 + β2Xi,2.
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(b) Use the Law of large numbers and Properties PLIM.1 and PLIM.2(i) to show that

1

n

n∑
i=1

(Xi,1 − X̄n,1)
2 p→ 1.

(c) Use techniques similar to those in (b) to show that

1

n

n∑
i=1

(Xi,1 − X̄n,1)(Xi,2 − X̄n,2)
p→ ρ.

(c) Derive the estimator for β̃1, and show that

E [β̃1 | X(n)] = β1 + β2

∑n
i=1(Xi,1 − X̄n,1)(Xi,2 − X̄n,2)∑n

i=1(Xi,1 − X̄n,1)2
.

This shows that β̃1 is biased, and this bias is what is referred to as omitted variable

bias. The fact that Xi,2 was omitted in the estimation, create this bias.

(d) Explain why, when n is really big,

E [β̃1 | X(n)] will be close to β1 + β2ρ,

with high probability. Hint: See (b) and (c).

(e) In view of (d), can you think of situations where omitting an independent variable

from the estimation does not lead to omitted variable bias? In other words, situ-

ation where the model in (6) is the true model, but β̃1 is an unbiased, or nearly

unbiased estimator.

1. Optional exercises

We will go through these exercises in a lecture or in a TA-session soon.

Exercise 4. (Instrumental variable estimation). Suppose that the model is the

same as the one given in (6) in Ex. 3, and that the independent variables X1,2, . . . , Xn,2

are still not available to us. There is, however, another variable we can collect data on,

namely Z1, . . . , Zn, and in fact, the Xi,1’s are functions of these Zi’s,

Xi,1 = γZi + ηi, for i = 1, . . . , n,

where γ 6= 0; the Z1, . . . , Zn are i.i.d. standard normals and independent of the η1, . . . , ηn,

independent of the X1,2, . . . , Xn,2, and independent of the ε1, . . . , εn; while it is in fact the

(η1, X1,2), . . . , (ηn, Xn,2) that are i.i.d. bivariate normals with distribution(
ηi
Xi,2

)
∼ N2

((0

0

)
,

(
1 ρ

ρ 1

))
, for i = 1, . . . , n.

The Z1, . . . , Zn are what econometricians refer to as an instrumental variable (IV), and

the idea in IV-estimation is to replace Xi,1 by their predicted values γ̂nZi, where γ̂n is the

minimiser of the function g1(γ) =
∑n

i=1(Xi,1−γZi)
2. The instrumental variable-estimators

for β0 and β1, say β̂0,iv and β̂1,iv, are the minimisers of the function

g2(β0, β1) =
n∑

i=1

(Yi − β0 − β1γ̂nZi)
2.
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Compare this function to the function given in (7), and notice how we have replaced each

Xi,1 by γ̂nZi.

(a) Read carefully through the assumptions we make about our model in this exercise.

(b) Derive an expression for γ̂n, and show that γ̂n is consistent for γ. Hint: Use

Properties PLIM.2(i) and PLIM.2(iii).

(c) Find an expression for the instrumental variable estimator of β1.

(d) Make sure you understand why

1

n

n∑
i=1

(Zi − Z̄n)ηi
p→ 0,

1

n

n∑
i=1

(Zi − Z̄n)Xi,2
p→ 0,

1

n

n∑
i=1

(Zi − Z̄n)εi
p→ 0,

and (1/n)
∑n

i=1(Zi − Z̄n)2 →p 1.

(e) Use the expression you found in (c), and write

β̂1,iv = β1
γ

γ̂n
+
β1
γ̂n

∑n
i=1(Zi − Z̄n){β1ηi + β2Xi,2 + εi}∑n

i=1(Zi − Z̄n)2
.

(e) Use the expression in (e), combined with the results from (d) and the Properties

PLIM.1 and PLIM.2 to show that

β̂1,iv
p→ β1.

In other words, β̂1,iv is consistent for β1.

Exercise 5. (Testing the β). This exercise builds on Ex. 5 and Ex. 6 in Homework 7.

Do those two exercises before you continue with this one. In this exercise we work with a

stock Stj and an index Ctj for j = 0, 1, . . . , n. The model for these two is the same as in

Ex. 6 in Homework 7, and all the notation is the same as well. In that exercise we showed

that the estimator

β̂n =

∑n
j=1(Xtj −Xtj−1)(Ytj − Ytj−1)∑n

j=1(Xtj −Xtj−1)2
,

is consistent for ρσS/σC . We now want to test the null-hypothesis ρ = 0 against its two-

sided alternative. You can think about what ρ = 0 means in the context of the Capital

asset pricing model (CAPM). Since σS > 0 and σC > 0 we might as well just test,

H0 : ρσSσC = 0, vs. HA : ρσSσC 6= 0.

To test this hypothesis we need to find the limit distribution of

ĉovn =
n∑

j=1

(Xtj −Xtj−1)(Ytj − Ytj−1),

as n→∞. The estimator ĉovn was defined in Ex. 6 of Homework 7, and in that exercise

you also find an expression for it that you should use in this exercise. To find the limit dis-

tribution of ĉovn we need to know about the Cramér–Slutsky rules. They are summarised

in Appendix B.
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(a) Explain why ξt1ηt1 , . . . , ξtnηtn are i.i.d. random variables, and use Ex. 2(b) to show

that

E [ξtjηtj ] = ρ.

Hint: E [ξtjηtj ] = E {E [ξtjηtj | ξtj ]} = E {ξtjE [ηtj | ξtj ]}.
(b) Show also that

Var(ξtjηtj ) = 1 + ρ2.

Hint: Write Var(ξtjηtj ) = E [ξ2tjη
2
tj ] − (E [ξtjηtj ])

2, and use that E [ξ4tj ] = 3, and

perhaps also that E [ξ3tj ] = 0 (these are results about the moments of the normal

distribution.

(c) Explain why (a) and (b) entail that
√

∆n(
∑n

j=1 ξtjηtj − ρ)√
1 + ρ2

d→ N(0, 1).

Hint: See Theorem 5.5 (the CLT) in the Lecture notes.

(d) Use the Cramér–Slutsky rules to argue that

∆
−1/2
n (ĉovn − ρσSσC)

σSσC
√

1 + ρ2
d→ N(0, 1),

as n→∞.

(e) Let ρ̂n be the estimator you found in Ex. 6(g). Importantly ρ̂n is consistent for ρ.

Propose also consistent estimators σ̂S,n and σ̂C,n of σS and σC , respectively. Now,

use the Cramér–Slutsky rules and Property PLIM.2 to argue that

∆
−1/2
n (ĉovn − ρσSσC)

σ̂S,nσ̂C,n

√
1 + ρ̂ 2

n

d→ N(0, 1),

as n→∞.

(f) Consider the test that rejects H0 if

∆
−1/2
n ĉovn

σ̂S,nσ̂C,n

√
1 + ρ̂ 2

n

≤ −cn or
∆

−1/2
n ĉovn

σ̂S,nσ̂C,n

√
1 + ρ̂ 2

n

≥ cn,

for some critical value cn > 0. Find cn such that

Pr(Type I error) ≈ 0.01.

What kind of investor would choose this significance level?

Appendix A. σ̂2n is unbiased

The estimator σ̂2n is as defined in (5). Write

(n− p)σ̂2n =
n∑

i=1

(Yi − xtiβ̂n)2 =
n∑

i=1

(Yi − xtiβ̂n)(Yi − xtiβ̂n)

=

n∑
i=1

(Yi − xtiβ̂n)Yi =

n∑
i=1

Y 2
i −

n∑
i=1

xtiYiβ̂n =

n∑
i=1

Y 2
i − β̂tnXtXβ̂n.

https://en.wikipedia.org/wiki/Normal_distribution#Moments
https://en.wikipedia.org/wiki/Normal_distribution#Moments
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Then take the expectation,

E [(n− p)σ̂2n] =
n∑

i=1

E[Y 2
i ]− E [β̂tnX

tXβ̂n]

=
n∑

i=1

(xtiβ)2 + nσ2 − E
n∑

i=1

β̂tnxix
t
iβ̂n

=
n∑

i=1

βtxix
t
iβ + nσ2 − E

n∑
i=1

β̂tnxix
t
iβ̂n

= nσ2 − E
n∑

i=1

(β̂n − β)txix
t
i(β̂n − β)

= nσ2 −
n∑

i=1

E (xti(β̂n − β))2

= nσ2 −
n∑

i=1

Var (xti(β̂n − β)) = nσ2 −
n∑

i=1

xtiVar (β̂n − β)xi

= nσ2 − σ2
n∑

i=1

xti(X
tX)−1xi

= nσ2 − σ2tr(X(XtX)−1Xt) = σ2(n− p).

This explains why one divides by n− p when estimating the variance σ2.

Appendix B. Cramér–Slutsky rules

If Xn converges in distribution to a random variable X, and Yn converges in probability

to a constant c, then

(i) Xn + Yn →d X + c;

(ii) XnYn →d Xc;

(iii) Xn/Yn →d X/c provided c 6= 0.
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