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EMIL A. STOLTENBERG

Solutions to Ex. 1. Consider the model

Yi = xtiβ + εi = β0 + β1xi,1 + · · ·+ βp−1xi,p−1 + εi, for i = 1, . . . , n,

where ε1, . . . , εn are i.i.d. random variables with E ε1 = 0 and Var(ε1) = σ2, the covariates

are fixed numbers (not rv’s), and n > p. The least squares estimator is the minimiser of

g(β) = g(β0, . . . , βp−1) =
n∑
i=1

(Yi − xtiβ)2.

(a) Differentiate with respect to β0, β1 and so on, and set the partial derivatives equal

to zero,

∂

∂β0
g(β) = −2

n∑
i=1

(Yi − xtiβ) = 0,

∂

∂β1
g(β) = −2

n∑
i=1

xi,1(Yi − xtiβ) = 0,

...

∂

∂β1
g(β) = −2

n∑
i=1

xi,p−1(Yi − xtiβ) = 0.

We see that

∂

∂β
g(β) =


∂
∂β0

g(β)
∂
∂β1

g(β)
...

∂
∂β1

g(β)

 = −2


∑n

i=1(Yi − xtiβ)∑n
i=1 xi,1(Yi − xtiβ)

...∑n
i=1 xi,p−1(Yi − xtiβ)



= −2

n∑
i=1


1

xi,1
...

xi,p−1

 (Yi − xtiβ) = −2

n∑
i=1

xi(Yi − xtiβ) = −2Xt(Y −Xβ) = 0
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where the 0 on the right is a p× 1 vector of zeros. We also use that
∑n

i=1 xiYi = XtY and∑n
i=1 xix

t
i = XtX.

(b) We assume that XtX is invertible. From the expression above we have

XtY = XtXβ.

Multiply by (XtX)−1 on both sides and we get the estimator

β̂ = (XtX)−1XtY.

Using the representation Y = Xβ + ε of the regression model, that X is a matrix of fixed

numbers, and that E ε = 0,

E [β̂] = (XtX)−1XtE [Y ] = (XtX)−1Xt(Xβ + E [ε]) = (XtX)−1XtXβ = β.

because (XtX)−1XtX = Ip (the identity matrix). For the variance, use that Var(AY ) =

AVar(Y )At, and that Var(Y ) = σ2In,

Var(β̂) = (XtX)−1XtVar(Y )((XtX)−1Xt)t = σ2(XtX)−1Xt((XtX)−1Xt)t

= σ2(XtX)−1XtX(XtX)−1 = σ2(XtX)−1,

where we use that ((XtX)−1Xt)t = X(XtX)−1, this is because (AB)t = BtAt, and

(At)−1 = (A−1)t. To see that latter, A−1A = I by definition, and It = I, that is, the

transpose of the identity matrix is equal to the identity matrix,

(A−1A)t = At(A−1)t = I,

so (A−1)t = (At)−1.

(c) (You should know the conclusion of this exercise, that the estimator is unbiased,

but don’t worry about the derivation) An unbiased estimator of σ2 is

σ̂2n =
1

n− p

n∑
i=1

(Yi − xtiβ̂n)2.

Write

(n− p)σ̂2n =
n∑
i=1

(Yi − xtiβ̂n)2 =
n∑
i=1

(Yi − xtiβ̂n)(Yi − xtiβ̂n)

=

n∑
i=1

(Yi − xtiβ̂n)Yi =

n∑
i=1

Y 2
i −

n∑
i=1

xtiYiβ̂n =

n∑
i=1

Y 2
i − β̂tnXtXβ̂n.
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Then take the expectation,

E [(n− p)σ̂2n] =
n∑
i=1

E[Y 2
i ]− E [β̂tnX

tXβ̂n]

=
n∑
i=1

(xtiβ)2 + nσ2 − E
n∑
i=1

β̂tnxix
t
iβ̂n

=
n∑
i=1

βtxix
t
iβ + nσ2 − E

n∑
i=1

β̂tnxix
t
iβ̂n

= nσ2 − E
n∑
i=1

(β̂n − β)txix
t
i(β̂n − β)

= nσ2 −
n∑
i=1

E (xti(β̂n − β))2

= nσ2 −
n∑
i=1

Var (xti(β̂n − β)) = nσ2 −
n∑
i=1

xtiVar (β̂n − β)xi

= nσ2 − σ2
n∑
i=1

xti(X
tX)−1xi

= nσ2 − σ2tr(X(XtX)−1Xt) = σ2(n− p).

This explains why one divides by n− p when estimating the variance σ2.

(d)–(g) Implement the code below, and make sure you understand it.

cd("~/Dropbox/H2020/GRA6039_H20/");

hw8 = readtable("hw8.txt");

y = hw8.y; x1 = hw8.x1;x2 = hw8.x2;

n = length(y);

X = [1 + zeros(n,1),x1,x2]; % The design matrix

p = length(X(1,:)); % Useful later

betahat = inv(transpose(X)*X)*transpose(X)*y;

sigma2hat = sum((y - X*betahat).^2)/(n - p);

sebetahat = sqrt(diag(sigma2hat*inv(transpose(X)*X)));

tvals = betahat./sebetahat;

pvals = 2.*(1 - normcdf(abs(tvals)));

out= round([betahat,sebetahat,tvals,pvals],3);

out = array2table(out);
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out.Properties.VariableNames = {’betahat’ ’se’ ’z’ ’p-value’};

out

% Here is the linear regression function that

% is already in Matlab. Compare the output to that

% you get with the code above.

X2 = [x1,x2];

fitlm(X2,y)

Solutions to Ex. 2. Let Z1 and Z2 be independent standard normal random variables,

and set Z = (Z1, Z2)
t.

(a) By the result given in Eq. (1) at the start of the Homework set, we know that AZ+µ

has a normal distribution, with expectation E[AZ + µ] = AE [Z] + µ = µ, and variance

Var(AZ + µ) = AAt =

(
σ21 ρσ1σ2

ρσ1σ2 σ22.

)
In conclusion (

X

Y

)
∼ N2

((µ1
µ2

)
,

(
σ21 ρσ1σ2

ρσ1σ2 σ22.

))
.

(b) We have

X = µ1 + σ1Z1,

Y = µ2 + σ2ρZ1 + σ2(1− ρ2)1/2Z2.

(b) We are to find the condition expectations,

E [Y | X] = E [µ2 + σ2ρZ1 + σ2(1− ρ2)1/2Z2 | X]

= µ2 + σ2ρE [Z1 | X] = µ2 + σ2ρE [
X − µ1
σ1

| X]

= µ2 + ρ
σ2
σ1

(X − µ1).

Here we use that since X and Z2 are independent E [Z2 | X] = E [Z2] = 0, for the second

equality; and, for the last equality, the rule that says E [h(X) | X] = h(X), for some

function h. We can write

E [Y | X] = E [Y ] +
Cov(Y,X)

Var(Y )
(X − E [X]).

By the symmetry relation between X and Y ,

E [X | Y ] = E [X] +
Cov(X,Y )

Var(X)
(Y − E [Y ]) = µ1 + ρ

σ1
σ2

(Y − µ2).
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(c) The conditional variance of Y given X is

Var(Y | X) = E [Y 2 | X]− (E [Y | X])2

= µ22 + 2µ2ρ
σ2
σ1

(X − µ1) + ρ2
σ22
σ21

(X − µ1)2 + σ22(1− ρ2)− (E [Y | X])2

= σ22(1− ρ2),

which you see by expanding the squares in (E [Y | X])2 = {µ2 + ρσ2/σ1(X − µ1)}2. By

the symmetry relation between X and Y again,

Var(X | Y ) = σ21(1− ρ2).

Solutions to Ex. 3. Suppose that the true regression model is

Yi = β0 + β1Xi,1 + β1Xi,2 + εi, for i = 1, . . . , n, (1)

where ε1, . . . , εn are i.i.d. standard normals independent ofX1,1, . . . , Xn,1 andX1,2, . . . , Xn,2,

while (X1,1, X1,2), . . . , (Xn,1, Xn,2) is are i.i.d. bivariate normals with distribution(
Xi,1

Xi,2

)
∼ N2

((0

0

)
,

(
1 ρ

ρ 1

))
, for i = 1, . . . , n.

For some reason it is impossible to collect data on X1,2, . . . , Xn,2, so this variable is not

in your dataset. You decide to estimate β0 and β1 by the estimators β̃0 and β̃1 defined as

the minimisers of

g(β0, β1) =
n∑
i=1

(Yi − β0 − β1Xi,1)
2. (2)

Let X
(n)
1 = (X1,1, . . . , Xn,1), and X

(n)
2 = (X1,2, . . . , Xn,2), while X(n) = (X

(n)
1 , X

(n)
2 ).

We’ll use

X̄n,1 =
1

n

n∑
i=1

Xi,1, and X̄n,2 =
1

n

n∑
i=1

Xi,2,

for the empirical means.

(a) We use the rule that say E [h(X) | X] = h(X). Here Yi = β0 + β1Xi,1 + β1Xi,2 + εi
is a function of Xi,1, Xi,2, while εi is independent of these two.

E [Yi | (Xi,1, Xi,2)]E [β0 + β1Xi,1 + β1Xi,2 + εi | (Xi,1, Xi,2)]

= β0 + β1Xi,1 + β1Xi,2 + E [εi | (Xi,1, Xi,2)] = β0 + β1Xi,1 + β1Xi,2,

because E [εi | (Xi,1, Xi,2)] = E [εi] = 0, by independence.

(b) Write

1

n

n∑
i=1

(Xi,1 − X̄n,1)
2 =

1

n

n∑
i=1

X2
i,1 − X̄2

n,1.

Here X̄n,1 →p 0 by the LLN, and since g(x)x2 is a continuous function, X̄2
n,1 →p 0 by

PLIM.1. The X2
1,1, . . . , X

2
n,1 are i.i.d. with expectation 1 and variance 2 (read about the

moments of the normal distribution on wikipedia). The LLN therefore gives (1/n)
∑n

i=1X
2
i,1 →p
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1. From PLIM.2 we can conclude that (1/n)
∑n

i=1(Xi,1 − X̄n,1)
2 →p 1.

(b) Write

1

n

n∑
i=1

(Xi,1 − X̄n,1)(Xi,2 − X̄n,2) =
1

n

n∑
i=1

Xi,1Xi,2 − X̄n,1X̄n,2,

here X̄n,1 →p 0 and X̄n,2 →p 0, so by PLIM.2 X̄n,1X̄n,2 →p 0. The X1,1X1,2, . . . , Xn,1Xn,2

are i.i.d. random variables with

E [X1,1X1,2] = Cov(X1,1, X1,2) + E [X1,1] E [X1,2] = Cov(X1,1, X1,2) = ρ,

and finite variance (to find the variance of Xi,1Xi,2, use techniques from Ex. 2). The LLN

then yields

1

n

n∑
i=1

(Xi,1 − X̄n,1)(Xi,2 − X̄n,2)
p→ ρ.

(c) The minimisers of g(β0, β1) are the least squares estimators β̃0 and β̃1 where

β̃1 =

∑n
i=1(Xi,1 − X̄n,1)Yi∑n
i=1(Xi,1 − X̄n,1)2

.

Since Yi = β0 + β1Xi,1 + β2Xi,2 + εi, we can write

β̃1 =

∑n
i=1(Xi,1 − X̄n,1)Yi∑n
i=1(Xi,1 − X̄n,1)2

=

∑n
i=1(Xi,1 − X̄n,1)(β0 + β1Xi,1 + β2Xi,2 + εi)∑n

i=1(Xi,1 − X̄n,1)2

= β1 + β2

∑n
i=1(Xi,1 − X̄n,1)(Xi,2 − X̄n,2)∑n

i=1(Xi,1 − X̄n,1)2
+

∑n
i=1(Xi,1 − X̄n,1)εi∑n
i=1(Xi,1 − X̄n,1)2

using that
∑n

i=1(Xi,1 − X̄n,1) = 0, and that
∑n

i=1(Xi,1 − X̄n,1)Xi,2 =
∑n

i=1(Xi,1 −
X̄n,1)(Xi,2 − X̄n,2). Using the rule E [AB | B] = BE [A | B], and that E [A | B] = E [A],

when A and B are independent,

E
[∑n

i=1(Xi,1 − X̄n,1)εi∑n
i=1(Xi,1 − X̄n,1)2

| X(n)
]

=

∑n
i=1(Xi,1 − X̄n,1)E [εi | X(n)

]∑n
i=1(Xi,1 − X̄n,1)2

=

∑n
i=1(Xi,1 − X̄n,1)E [εi]∑n
i=1(Xi,1 − X̄n,1)2

= 0.

Then, using that E [h(X) | X] = h(X),

E [β̃1 | X(n)] = β1 + β2

∑n
i=1(Xi,1 − X̄n,1)(Xi,2 − X̄n,2)∑n

i=1(Xi,1 − X̄n,1)2
. (3)

(d) We can combine the results from (b) and (c), and use PLIM.2 to conclude that∑n
i=1(Xi,1 − X̄n,1)(Xi,2 − X̄n,2)∑n

i=1(Xi,1 − X̄n,1)2
p→ ρ.

But this means that

E [β̃1 | X(n)]
p→ β1 + ρβ2,

(e) We have seen that

E [β̃1 | X(n)] + β1 + biasn
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where the bias term is as given in (3). This bias is referred to as omitted variable bias.

But if ρ = 0 or very close to 0 and n is big, then biasn is going to be very close to zero

with high probability. The moral is that omitting a variable is okay when that variable

is uncorrelated with the included independent variable whose effect we are interested in

accurately estimating.

Solutions to Ex. 4. Read carefully through the formulation of the model in this exercise.

As we saw in Ex. 3 we saw that β̃1 is biased when there is an omitted independent variable

that is correlated with the Xi,1. With IV-estimation we assume that there is a random

variable Zi that is correlated with Xi,1, and whose effect on Yi is not direct, and goes

through Xi,1. In our model

Xi,1 = γZi + ηi, for i = 1, . . . , n,

where η1, . . . , ηn are independent of Z1, . . . , Zn. First we find the least-squares estimator

γ̂n for γ, then replace Xi,1 by the predicted values γ̂nZi when estimating β1. That is, find

β̂0 and β̂1 that minimise

g2(β0, β1) =

n∑
i=1

(Yi − β0 − β1γ̂nZi)2.

(b) The estimator γ̂n is

γ̂n =

∑n
i=1(Zi − Z̄n)Xi,1∑n
i=1(Zi − Z̄n)2

=

∑n
i=1(Zi − Z̄n)(γZi + ηi)∑n

i=1(Zi − Z̄n)2
= γ +

∑n
i=1(Zi − Z̄n)ηi∑n
i=1(Zi − Z̄n)2

.

Here
∑n

i=1(Zi − Z̄n)ηi →p 0, and
∑n

i=1(Zi − Z̄n)2 →p 1, so by PLIM.2, γ̂n →p γ.

(c) The instrumental variable estimator for β1 is

β̂1,iv =

∑n
i=1(γ̂nZi − γ̂nZ̄n)Yi∑n
i=1(γ̂nZi − γ̂nZ̄n)2

.

(e) We can write

β̂1,iv =

∑n
i=1(γ̂nZi − γ̂nZ̄n)Yi∑n
i=1(γ̂nZi − γ̂nZ̄n)2

=
1

γ̂n

∑n
i=1(Zi − Z̄n)(β0 + β1Xi,1 + β2Xi,2 + εi)∑n

i=1(Zi − Z̄n)2

= β1
γ

γ̂n
+
β1
γ̂n

∑n
i=1(Zi − Z̄n){β1ηi + β2Xi,2 + εi}∑n

i=1(Zi − Z̄n)2
.

We can work through this expression term by term. First, γ/γ̂n →p 1 using PLIM.2.

Second,

1

n

n∑
i=1

(Zi − Z̄n)ηi →p 0,
1

n

n∑
i=1

(Zi − Z̄n)Xi,2 →p 0,
1

n

n∑
i=1

(Zi − Z̄n)εi →p 0,

which you can argue for by using the LLN. Third,
∑n

i=1(Zi − Z̄n)2 →p 1, and we use

PLIM.2 to conclude that β̂1,iv →p β1.

Solutions to Ex. 5. I’ll type this up soon.
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