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1. Lecture 1, August 24, 2020

In this lecture we cover some probability, introduce random variables, talk about sums

and the law of large numbers. Relevant reading is Math refresher B in Wooldridge (2019)

and the scanned pages from Allen (2003).

1.1. Sets and probability. A sample space Ω is a collection of all possible outcomes ω

of an experiment, for example Ω = {H,T}, Ω = {1, 2, 3, 4, 5, 6}, or Ω = {ω : ω ∈ [0,∞)}.
Note the so-called set-builder notation, for example

Ω = {ω : ω ∈ N, ω ≤ 6} = {1, 2, 3, 4, 5, 6}.

In words: Ω = all ω such that ω is a natural number, and ω is smaller than or equal to

6. Subsets A of Ω are called events (well, given some technical conditions that will not

bother us in this course).

Some operations on events. Let A and B be events/sets

The union of A and B is the set A ∪B = {ω : ω ∈ A orω ∈ B}.
The intersection of A and B is the set A ∩B = {ω : ω ∈ A andω ∈ B}.
The difference of A and B is the set A \B = {ω : ω ∈ A andω /∈ B}.
The complement of A is the set Ac = {ω : ω is not inA}.

(1)

In words (draw Venn diagrams!): The set A∪B consists of all elements ω that are in A or

in B (or in both). The set A ∩ B consists of all elements ω that are in both A and in B.

The set A\B consists of all elements ω that are in A and not in B, in fact A\B = A∩Bc.

The set Ac consists of all elements ω that do not belong to A.

There is also a set called the empty set, denoted ∅. This is the set that has no members,

we may write ∅ = {}. Here is a fact: The empty set is a subset of all sets, that is ∅ ⊂ A for

any set A. (To see this: Assume that ∅ is not a subset of A. Then ∅ must have a least one

member that is not in A. But ∅ has no members.) Two sets A and B whose intersection

is the empty set, that is A ∩B = ∅, are called disjoint.
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Theorem 1.1. For any three events A, B, and C defined on a sample space X ,

Commutativity : A ∪B = B ∪A,
A ∩B = B ∩A;

Associativity : A ∪ (B ∪ C) = (A ∪B) ∪ C,
A ∩ (B ∩ C) = (A ∩B) ∩ C;

Distributive laws : A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C);

De Morgan’s laws : (A ∪B)c = Ac ∩Bc,

(A ∩B)c = Ac ∪Bc.

Proof. Optional exercise. �

For more on sets and related stuff, you could, for example, have a look at Papineau

(2012) or Hammack (2020) (these books are not part of the curriculum).

Definition 1.2. (Probability). Suppose that Ω is a sample space, and that A is the

collection of all the events in Ω. A probability Pr is a function whose domain is A, that

obeys the following axioms:

(i) Pr(A) ≥ 0 for all events A;

(ii) Pr(Ω) = 1;

(iii) For all sequences (An)n≥1 of events such that An ∩ Am = ∅ whenever n 6= m

(pairwise disjoint),

Pr(
∞⋃
n=1

An) =
∞∑
n=1

Pr(An).

These are known as the Kolmogorov axioms. Notice that this definition tells us what

rules a probability function has to obey, not what particular probability function is the

correct one in a given experiment.

Here are some properties of probability functions.

Proposition 1.3. Let Pr be a probability function, and A and B are events in Ω. Then

(a) Pr(∅) = 0.

(b) Pr(A) ≤ 1.

(c) Pr(A) = 1− Pr(Ac).

(d) Pr(B \A) = Pr(B)− Pr(A ∩B).

(e) Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

(f) If A ⊂ B then Pr(A) ≤ Pr(B).

Proof. In class and perhaps as homework. �

Definition 1.4. (Conditional probability). If A and B are events and Pr(B) > 0,

the conditional probability of A given B, written Pr(A | B), is

Pr(A | B) =
Pr(A ∩B)

Pr(B)
.
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This definition is quite intuitive (again, draw a Venn diagram): It treats B as the

new sample space, and computes the fraction of B that intersects A. Suppose we have

a population where 10% are smokers, 20% of the population are above 60 years old, and

5% of the population are smokers and over sixty. We then have Pr(smoker) = 1/10,

Pr(over 60) = 1/5, and Pr(smoker and over 60) = 1/20. A person is sampled at random

from the population, and this person happens to be over sixty. What is the probability

that this person is a smoker? We compute

Pr(smoker | over 60) =
Pr(smoker and over 60)

Pr(over 60)
=

1/20

1/5
=

1

4
.

The point is that when we get to know that the person is over 60, that is, given that the

person is over 60, we treat all people over sixty as our new population.

Proposition 1.5. Let B be an event with Pr(B) > 0. Then the function

A 7→ Pr( · | B),

is a probability function.

Proof. In class or optional homework. �

Definition 1.6. (Independence). Two events A and B are independent if

Pr(A ∩B) = Pr(A)Pr(B).

If A and B are not independent, they are said to be dependent.

If the event A and B are independent, then A and Bc are independent, also Ac and

Bc are independent. The proof of this is a nice exercise in the use of Theorem 1.1 and

Proposition 1.3: Assume that A and B are independent events, then

Pr(Ac ∩Bc)
De Morgan’s

= Pr((A ∪B)c)
Prop. 1.3(c)

= 1− Pr(A ∪B)

Prop. 1.3(e)
= 1− Pr(A)− Pr(B) + Pr(A ∩B)

Independence
= 1− Pr(A)− Pr(B) + Pr(A)Pr(B)

= (1− Pr(A))(1− Pr(B))
Prop. 1.3(c)

= Pr(Ac)Pr(Bc),

which shows that Ac and Bc are independent.

[xx perhaps include the Law of total probability and Bayes’ theorem xx]

1.2. Random variables and distribution functions. In many experiments it is easier

to deal with, and we might be more interested in, a summary variable than with the

original probability. A coin is tossed three times, there are 23 = 8 possible outcomes,

Ω = {HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}.

But what we are interested in is

X = # number of heads ∈ {0, 1, 2, 3}. (2)
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Notice that X is a function from Ω to {0, 1, 2, 3}: The space Ω is its domain, while

{0, 1, 2, 3} is it range. We have

ω HHH HHT HTH THH HTT THT TTH TTT

X(ω) 3 2 2 2 1 1 1 0

Definition 1.7. A random variable is a function from the sample Ω into the real numbers.

Suppose that the coin above is fair (equal probability for heads and tails), then

Pr(HHH) = Pr(HHT ) = · · · = Pr(TTT ) =
1

8
.

Note that

X−1({0}) = {ω ∈ Ω: X(ω) = 0} = {TTT};

X−1({1}) = {ω ∈ Ω: X(ω) = 1} = {TTH, THT,HTT};

X−1({2}) = {ω ∈ Ω: X(ω) = 2} = {HHT,HTH, THH};

X−1({3}) = {ω ∈ Ω: X(ω) = 3} = {HHH}.

Writing {X = x} for the more cumbersome {ω ∈ Ω: X(ω) = x} – which is standard! –

we see that

Pr(X = 0) =
1

8
, Pr(X = 1) =

3

8
, Pr(X = 2) =

3

8
, Pr(X = 3) =

1

8
.

In this sense, the random variable X induces a probability function, PX say,

PX(B) = PrX−1(B) = Pr {ω ∈ Ω: X(ω) ∈ B},

on {0, 1, 2, 3} for all events B in {0, 1, 2, 3}, for example B = {0}, or B = {0, 1}, etc. That

is, Pr is a probability function on Ω, while via the random variable X we get a probability

function PX in {0, 1, 2, 3}. We say that PX is the distribution of X and write

X ∼ PX .

If PX is the normal distribution with mean µ and variance σ2 we typically just write

X ∼ N(µ, σ2), if it is the Poisson distribution with mean λ, we write X ∼ Poisson(λ), and

so on.

1.3. The summation symbol. Let X1, . . . , Xn be n observations, data points, random

variable, numbers. Here is a definition: For integers k ≤ n,

n∑
i=k

Xi = Xk +Xk+1 + · · ·+Xn−1 +Xn. (3)

For example, if k = 1 and n = 4, then
∑4

i=1Xi = X1 +X2 +X3 +X4. In some situations

we might also write

n∑
i=1

Xi =
∑

1≤i≤n
Xi =

∑
i∈{1,...,n}

Xi =
∑
i∈A

Xi,



LECTURE NOTES 5

given that A = {1, . . . , n}. Let’s say we want to sum over the numbers 1, 3, 5, 7, 9, we can

define B = {odd numbers between 0 and 10} = {1, 3, 5, 7, 9}, then
∑

j∈BXj = X1 +X3 +

X5 +X7 +X9.

Again, let X1, . . . , Xn be n observations, and a and b are some constants, for example

a = 2.34 and b = −3.45. Use the definition in (3),

n∑
i=1

(aXi + b) = (aX1 + b) + · · ·+ (aXn + b)

= aX1 + · · ·+ aXn + b+ · · ·+ b︸ ︷︷ ︸
n of these

= a(X1 + · · ·+Xn) + nb

= a
n∑
i=1

Xi + nb.

We see that constants ‘go outside the sum’. By being constant we mean that they do not

change with i.

1.4. Miscellaneous. A type of sums that appear from time to time, are the telescoping

sums: If we have n+ 1 numbers a0, a1, . . . , an−1, an, then

n∑
i=1

(ai − ai−1) = an − a0,

is a telescoping sum. To see this, try a small n (always a good idea to understand sums!),

say n = 4, then

4∑
i=1

(ai − ai−1) = (a1 − a0) + (a2 − a1) + (a3 − a2) + (a4 − a3)

= ��a1 − a0 + ��a2 −��a1 + ��a3 −��a2 + a4 −��a3 = a4 − a0.

Here is a somewhat advanced example where a telescoping sum appears, and where we

use many of the rules in Proposition 1.3. Suppose A1, A2, . . . are events such that

A1 ⊂ A2 ⊂ A3 ⊂ · · · ,

that is (An)n≥1 is an increasing sequence of events. Let A = ∪∞n=1An = A1∪A2∪A3∪· · · .
Then probability functions are continuous in the sense that

lim
n→∞

Pr(An) = Pr(A). (4)

This is not evident, and has to be proved. Define the sets

B1 = A1 \A0, B2 = A2 \A1, B3 = A3 \A2, . . . ,
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where we take A0 = ∅. Notice that these sets are disjoint, that is Bi ∩ Bj = ∅ whenever

i 6= j. Importantly,
∞⋃
n=1

Bn =
∞⋃
n=1

(An \An−1) =
∞⋃
n=1

(An ∩Acn−1)

= (

∞⋃
n=1

An) ∩ (

∞⋃
n=1

Acn−1) = A ∩ (

∞⋂
n=1

An−1)
c = A ∩ ∅c = A.

Here we use Theorem 1.1, the Distributive laws for the third equality, and De Morgan’s

laws for the fourth equality. Then

Pr(A) = Pr(

∞⋃
j=1

Bj) =

∞∑
j=1

Pr(Bj) = lim
n→∞

n∑
j=1

Pr(Aj \Aj−1)

= lim
n→∞

n∑
j=1

{Pr(Aj)− Pr(Aj−1)} = lim
n→∞

{Pr(An)− Pr(A0)} = lim
n→∞

Pr(An).

The first equality uses the result just above; the second equality is Definition 1.2(iii), using

that the Bjs are disjoint; the fourth equality is Proposition 1.3(d), and that Aj ∩Aj−1 =

Aj−1 because Aj−1 ⊂ Aj ; the fifth equality is what we just learned about telescoping

sums; and the last equality is A0 = ∅, and that Pr(∅) = 0 by Proposition 1.3(a).

If A1 ⊃ A2 ⊃ A3 ⊃ · · · is a decreasing sequence of events, then

lim
n→∞

Pr(An) = Pr(

∞⋂
n=1

An). (5)

To prove this, consider the sets Bn = A1 \ An for n = 1, 2, . . .. Note that Bn ⊂ Bn+1 for

all n. Now use (4) and Proposition 1.3(d).

Suppose X is a random variable with the uniform distribution on [0, 1]. That is, for

any interval (a, b) in [0, 1] with a < b,

Pr(X ∈ (a, b)) = b− a.

What is the probability that X = x for some x ∈ [0, 1]? We can use (5) to compute this

probability. Let An = {X ∈ (x− 1/n, x+ 1/n)} for n = 1, 2, . . .. We then have

{X = x} =

∞⋂
n=1

An.

Use this and (5) to compute the probability that X = x.

2. Lecture 2, August 31, 2020

In this lecture we’ll talk about cumulative distribution functions, densities, independent

random variables, expectation, and variance. Relevant reading is Math refresher B (called

Appendix B in the sixth edition) in Wooldridge (2019) and the scanned pages from Allen

(2003).
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Figure 1. The cumulative distribution function of the Poisson distribution

with mean 2.5 (left) and the of the standard normal distribution (right).

For more probability, see for example Casella and Berger (2002, ch. 1), Grimmet and

Stirzaker (2001), Jacod and Protter (2012), or Shiryaev (1996) (these books are not part

of the curriculum).

2.1. Cumulative distribution functions. The cumulative distribution function (cdf.)

F of a random variable X is

F (x) = Pr(X ≤ x), (6)

Theorem 2.1. A function F is a cumulative distribution function if and only if it has

the following properties

(i) F (x) is nondecreasing, i.e. F (x) ≤ F (y) whenever x ≤ y;

(ii) limx→−∞ F (x) = 0, and limx→∞ F (x) = 1;

(iii) F (x) is right continuous, that is for each x0, we have limx↓x0 F (x) = F (x0).

Proof. This theorem can be proved using the definition in (6) as well as the axioms in

Definition 1.2. Not part of the curriculum. �

A discrete random variable is a random variable that takes its values in a set that can be

listed. Examples of such sets are {0, 1}, {0, 1, 2, 3}, {0, 1, 2, . . .}, and {0, 1/4, 1/2, 3/4, 1}.
A discrete random variable has a cumulative distribution function with jumps, meaning

that there are points x at which

F (x)− F (x− δ) > 0,

however small you choose δ > 0. Let’s look at the cdf. of the random variable X from

Lecture 1 (see eq. (2)) to see what this means. Recall that X takes its values in {0, 1, 2, 3}
and has distribution

Pr(X = 0) =
1

8
, Pr(X = 1) =

3

8
, Pr(X = 2) =

3

8
, Pr(X = 3) =

1

8
.
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The cdf. F of X is given by

F (x) = Pr(X ≤ x) =



0, −∞ < x < 0,

1/8, 0 ≤ x < 1,

1/2, 1 ≤ x < 2,

7/8, 2 ≤ x < 3,

1, 3 ≤ x <∞.
If you make a drawing of this function, you’ll see that it jumps at x = 0, x = 1, x = 2,

and x = 3. For example at x = 2, we see that for 0 < δ < 1,

F (2)− F (2− δ) =
1

2
− 1

8
=

3

8
= Pr(X = 2),

thus F (x) makes a jump of size Pr(X = 2) = 3/8 at x = 2.

A continuous random variable has a cdf. F with no such jumps, that is for each x and

for any ε > 0, we can find a δ > 0 such that

|F (x)− F (x− δ)|< ε.

Interpretation: X is a continuous random variable if it can take any value in a subset

of R, and no single value has a positive probability of occurring. A normally distributed

random variable X (with mean µ and variance σ2) is continuous: Its cdf. is

FX(x) =

∫ x

−∞

1√
2πσ

exp
{
− 1

2σ2
(z − µ)2

}
dz.

A random variable U with the uniform distribution on [a, b] is continuous. Its cdf. is

FU (x) =


0, −∞ < x < a,
x−a
b−a , a ≤ x < b,

1, b ≤ x <∞.

2.2. Densities. The density of a discrete random variable X is fX(x) = Pr(X = x).

We often call this the probability mass function (pmf.) of X, when X is discrete. If, for

example X ∼ Poisson(λ), its pmf. is

fX(x) =
1

x!
λx exp(−λ), x = 0, 1, 2, . . . ,

for λ > 0. For x = 0, 1, 2, . . ., the cdf. is

FX(x) = Pr(X ≤ x) =

x∑
z=0

fX(z) =

x∑
z=0

1

z!
λz exp(−λ).

For a continuous random variable X, with a continuous cdf. F (x), there is a function

f(x), called the probability density function of X, such that

F (x) = Pr(X ≤ x) =

∫ x

−∞
f(z) dz.

Using the Fundamental Theorem of Calculus (if f is continuous), we have that

d

dx
F (x) = F ′(x) = f(x),
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Figure 2. The probability density function f(x) in (7) with various values

for the mean µ and variance σ2.

with dF (x)/dx = F ′(x) just being two different ways of writing the derivative with respect

to x.

The pdf. of a normally distributed random variable X with mean µ and variance σ2 is

f(x) =
1√
2πσ

exp
{
− 1

2σ2
(x− µ)2

}
. (7)

This is the famous ‘bell curve’ as depicted in Figure 2.

You can go from density functions to cumulative distribution functions. In fact, any

function f(x) such that

f(x) ≥ 0, for all x, and
∑
x

f(x) = 1 or

∫ ∞
−∞

f(x) dx = 1,

is the pmf. or pdf. of a random variable, and F (x) =
∫ x
−∞ f(y) dy is its cdf. (replace the

integral by a sum in the discrete case). Consider for example the function

f(x) =

{
θxθ−1, for 0 ≤ x ≤ 1,

0, otherwise,
for some θ > 0.

Then ∫ ∞
−∞

f(x) dx =

∫ 1

0
θxθ−1 dx = xθ

∣∣∣∣1
0

= 1.

The function F (x) defined by F (x) =
∫ x
−∞ f(z) dz =

∫ x
0 θz

θ−1 dz is then the cumulative

distribution function of a random variable. If we call this random variable X, then for

0 ≤ a < b ≤ 1, for example

Pr(a < X ≤ b) = F (b)− F (a) =

∫ b

a
θxθ−1 dx = bθ − aθ,

is the probability that X takes its value in the interval (a, b] ⊂ [0, 1].
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2.3. Independent random variables. If X1, . . . , Xn are n random variables, the joint

cumulative distribution function of the vector (X1, . . . , Xn) is

F (x1, . . . , xn) = Pr(X1 ≤ x1, . . . , Xn ≤ xn).

Assume that n = 2, that is (X1, X2). If F (x1, x2) is continuous, then

F (x1, x2) =

∫ x1

−∞

∫ x2

−∞
f(z1, z2) dz2 dz1,

where by the Fundamental Theorem of Calculus,

f(x1, x2) =
∂2

∂x1∂x2
F (x1, x2),

is the joint density of the random vector (X1, X2)
′.

The random variables X1, . . . , Xn are independent if

FX1,...,Xn(x1, . . . , xn) = Pr(X1 ≤ x1, . . . , Xn ≤ xn)

= Pr(X1 ≤ x1) · · ·Pr(Xn ≤ xn) = FX1(x1) · · ·FXn(xn).
(8)

for all x1, . . . , xn. Here FX1,...,Xn(x1, . . . , xn) is the joint cdf. of (X1, . . . , Xn) while FXi is

the cdf. of Xi, for i = 1, . . . , n. The definition in (8) can also be stated in terms of densities.

Suppose X1, . . . , Xn are random variables with densities fX1 , . . . , fXn , then X1, . . . , Xn are

independent if

fX1,...,Xn(x1, . . . , xn) = fX1(x1) · · · fXn(xn). (9)

for all x1, . . . , xn, where fX1,...,Xn is their joint density.

Independent and identically distributed (i.i.d.) random variables: The random variable

X =

{
0, if tails,

1, if heads
(10)

describes the experiment we perform when tossing a coin once. The probability of the

coin landing heads up is an unknown number 0 < p < 1,

Pr(X = 1) = p.

Let’s say we choose to toss the coin n times, this gives the random variables

X1, . . . , Xn,

all defined similarly to the random variable X in (10). Since the second toss is not

influenced by the outcome of the first toss, the third is not influenced by the second, and

so on (this is an assumption), the random variables X1, . . . , Xn are independent. Moreover,

since it is the same coin we are tossing, it is reasonable to assume that the probability p

of getting heads does not change from toss to toss, that is

Pr(Xi = 1) = Pr(X = 1) = p, for i = 1, . . . , n.
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In other words, the random variables X1, . . . , Xn are identically distributed. Using the

independence of X1, . . . , Xn and the fact that these are identically distributed, we get

FX1,...,Xn(x1, . . . , xn) = FX1(x1) · · ·FXn(xn) = FX(x1) · · ·FX(xn).

In words, the joint distribution of the random variables is equal to the product of the

distribution of each single one of them.

2.4. Expectation. The expectation of a random variable X is its theoretical mean. Here

is an example that should make clear what this means. Let X be a random variable taking

its values in {0, 1, 2}, with distribution,

Pr(X = 0) =
1

8
, Pr(X = 1) =

1

4
, Pr(X = 2) =

5

8
.

Suppose X1, . . . , Xn are n independent random variables, all with the same distribution

as X. Given that this is all we know, what value would we expect the empirical average

X̄n = (1/n)
∑n

i=1Xi to take? Convince yourself of the following

X̄n = 0× #{i : Xi = 0}
n

+ 1× #{i : Xi = 1}
n

+ 2× #{i : Xi = 2}
n

=
2∑

x=0

x
#{i : Xi = x}

n
,

where #{i : Xi = x} = the number of i such that Xi = x. In this expression for the

empirical average X̄n, it certainly seems reasonable that

#{i : Xi = x}
n

≈ Pr(X = x), for x = 0, 1, 2,

particularly if the sample size n is sufficiently large. This means that X̄n ought to be close

to
2∑

x=0

xPr(X = x) = 0× 1

8
+ 1× 1

4
+ 2× 5

8
=

3

2
.

Thus, from what we know about the distribution of X, we would expect X̄n to be close

to 3/2, in fact 3/2 is the expectation or the expected value of X.

Here is a Matlab script where we sample X1, . . . , Xn for n = 100, and then compute
the mean in the two different ways indicated above. Run the scrip a few times and see
how the empirical mean ‘bounces’ around its expected value.

n = 100 % the sample size

x = randsample([0,1,2],n,true,[1/8, 1/4, 5/8]);

% the true argument in randsample() means that we

% sample with replacement.

mean(x)

0*sum(x == 0)/n + 1*sum(x == 1)/n + 2*sum(x == 2)/n

Definition 2.2. (Expectation). The expectation EX of the random variable X taking

its values in X ⊂ R = (−∞,∞) is given by

EX =
∑
x∈X

xf(x),
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when X is discrete (for example X = {0, 1, 2} or X = {0, 1, 2, . . .}), and has pmf. f(x) =

Pr(X = x); and by

EX =

∫ ∞
−∞

xf(x) dx,

when X is continuous and has pdf. f(x).

When it makes the math look nicer, we’ll sometimes write E (X), E [X], or even E {X}
instead of EX. Also, when g is a real valued function, the expectation of g(X) is

E g(X) =

∫ ∞
−∞

g(x)f(x) dx, (11)

where X has pdf. f(x). Replace the integral by a sum when X is discrete.

Let’s compute the expectation of some random variables. If X takes its values in {0, 1}
and Pr(X = 1) = p (a coin flip), then

EX = 0× Pr(X = 0) + 1× Pr(X = 1) = 0× (1− p) + 1× p = p.

The expectation of a fair coin is therefore 1/2.

IfX is a continuous random variable taking its values in X = [a, b] with equal probability

then X has density

f(x) =

{
1/(b− a), for a ≤ x ≤ b,
0, otherwise,

and we say that X has the uniform distribution in [a, b]. Its expectation is

EX =

∫ b

a
x

1

b− a
dx =

1

2

x2

b− a

∣∣∣∣b
a

=
1

2

b2 − a2

b− a
=

1

2

(b− a)(b+ a)

b− a
=
b+ a

2
.

If X has the exponential distribution on X = [0,∞), then its pdf. f(x) is

f(x) =

{
θ exp(−θx), for x ≥ 0,

0, otherwise,

for some θ > 0, then (please show that)

EX =

∫
X
xf(x) dx =

∫ ∞
0

x θ exp(−θx) dx =
1

θ
.

The most important expectation to know about (for this course) is the expectation

of the normal distribution. If X ∼ N(µ, σ2), which means that X takes its values in

X = R = (−∞,∞), and has the pdf. f(x) given in (7), then

EX =

∫ ∞
−∞

xf(x) dx =

∫ ∞
−∞

x
1√
2πσ

exp
{
− 1

2σ2
(x− µ)2

}
dx = µ.

If X is a random variable with pdf. f(x), then for any interval (or union of intervals)

in R, the probability that X is in A is

Pr(X ∈ A) =

∫
A
f(x) dx.
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Let IA be the indicator function,

IA(x) =

{
1, if x ∈ A,
0, otherwise.

Then, using g(x) = IA(x) in (11), we have

Pr(X ∈ A) =

∫
A
f(x) dx =

∫ ∞
−∞

IA(x)f(x) dx = E IA(X), (12)

so E IA(X) = Pr(X ∈ A). For example, E I(−∞,x](x) = Pr(X ≤ x) = F (x), where F is

the cdf. of X.

2.5. Variance and covariance. The variance of a random variable X is the expectation

of its squared distance from its expectation. We’ll write VarX, or Var (X), for the variance

of X. Here is the definition,

VarX = E (X − E [X])2.

For a continuous random variable X with expectation EX = µ and pdf. X, its variance is

VarX = E (X − µ)2 =

∫ ∞
−∞

(x− µ)2f(x) dx.

Let’s compute the variance of the random variable X with the uniform distribution on

[a, b]. Recall that EX = (a + b)/2, and f(x) = 1/(b − a) on [a, b] and zero elsewhere.

Thus,

VarX =

∫ b

a

(
x− a+ b

2

)2 1

b− a
dx =

1

3

(
x− a+ b

2

)3 1

b− a

∣∣∣∣b
a

=
1

3

{(b− a
2

)3 − (a− b
2

)3} 1

b− a
=

1

24

{(b− a
2

)3
+
(b− a

2

)3} 1

b− a
=

(b− a)2

12
.

Here is some Matlab code where we estimate the mean and the variance of a uniform
distribution on [−1, 1]. Before you run the code, think about what the empirical mean
and the empirical variance ought to be close to.

x = -1 + 2*rand(100,1); % sample 100 uniforms on [-1,1]

mean(x) % should be close to zero

var(x) % should be close to 1/3

The variance of a random variable X ∼ N(µ, σ2) is σ2. Recall that its expectation is

EX = µ, so

VarX = E (X − µ)2 =

∫ ∞
−∞

(x− µ)2
1√
2πσ

exp{− 1

2σ2
(x− µ)2} dx = σ2.

The covariance of two random variables X and Y , written Cov(X,Y ), is defined as

Cov(X,Y ) = E (X − E [X])(Y − E [Y ]).
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A very common distribution when modelling two dependent random variables (X,Y ) is the

bivariate normal distribution with parameters µX , µY , σ
2
X , σ

2
Y and ρ, it has pdf. f(x, y),

f(x, y) =
1

2πσXσY
√

1− ρ2

× exp
{
− 1

2(1− ρ2)
((x− µX)2

σ2X
+

(y − µY )2

σ2Y
− 2ρ

(x− µX)(x− µY )

σXσY

)}
.

(13)

Here ρ ∈ (−1, 1) is called the correlation, σX , σY > 0, and µX , µY ∈ R, and

EX = µX , EY = µY , VarX = σ2X , VarY = σ2Y ,

while

Cov(X,Y ) = ρσXσY .

The correlation of two random variables X and Y is Cov(X,Y )/
√

Var (X)Var (Y ). For

the (X,Y ) with pdf. f(x, y) given in (13), the correlation is ρ, for

Cov(X,Y )√
Var (X)Var (Y )

=
ρσXσY
σXσY

= ρ.

A simple way of simulating from the bivariate normal distribution with parameter values

you choose, is the following. Simulate two independent standard normal random variables

Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1). Set

X = σXZ1 + µX ,

Y = σY (ρZ1 +
√

1− ρ2Z2) + µY .

Then (X,Y ) has the joint pdf. f(x, y) given in (13). Here is a Matlab script where we
simulate n = 1000 independent pairs (X1, Y1), . . . , (Xn, Yn). (the pairs are independent,
not the Xi, Yi in each pair). Run the script a few times and vary the value of ρ ∈ (−1, 1)
(this is the rho in the script).

n = 1000;

muX = 0; muY = 0;

sigmaX = 1; sigmaY = 1;

rho = 0.54321;

Z1 = normrnd(0,1,[1,n]);

Z2 = normrnd(0,1,[1,n]);

X = sigmaX*Z1 + muX;

Y = sigmaY*(rho*Z1 + sqrt(1 - rho^2)*Z2) + muY;

scatter(X,Y)

2.6. Properties of expectation and variance. Suppose that X1, . . . , Xn are random

variables with joint pdf. f(x1, . . . , xn), and let g(x1, . . . , xn) be a real valued function, thus

g : Rn → R. The expectation of g(X1, . . . , Xn) is then

E g(X1, . . . , Xn) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xn)f(x1, . . . , xn) dx1 · · · dxn. (14)
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If some of these Xis are discrete, the associated integrals are replaced with sums.

If we have two random variables X and Y , whose joint pdf. is fX,Y (x, y). Then

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy,

is the marginal pdf. of X, while fY (y) =
∫∞
−∞ fX,Y (x, y) dx is the marginal pdf. of Y .

Recall also that pdf.’s integrate to 1, so

1 =

∫ ∞
−∞

fX(x) dx =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) dy dx = 1.

Proposition 2.3. Let X1, . . . , Xn be random variables, and let a1, . . . , an and b be con-

stants (i.e. not random variables, just some numbers), then

E (a1X1 + · · ·+ anXn + b) = a1E (X1) + · · ·+ anE (Xn) + b.

Proof. For n = 2 in class. �

From this proposition it follows that for a random variable X and a constant a

VarX = E [X2]− (E [X])2, and Var (aX) = a2 Var(X).

Importantly, if X1, . . . , Xn are i.i.d. random variables, so that they have the same ex-

pectation µ = EX1 = · · · = EXn, then Proposition 2.3

E X̄n = E
( 1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E (Xi) = µ.

We say that the empirical average is unbiased for µ. More on this soon!

Proposition 2.4. Let X and Y be random variables. Then

- If X and Y are independent, then Cov(X,Y ) = 0;

- For constants a, b, c

Var(aX + bY + c) = a2 Var(X) + b2 Var(Y ) + 2abCov(X,Y ).

Proof. In class or as homework. �

Let X1, . . . , Xn be i.i.d. random variables with variance σ2. We can use Proposition 2.4

to show that

Var(X̄n) = Var
( 1

n

n∑
i=1

Xi

)
=
σ2

n
.
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3. Lecture 3, September 7, 2020

See Wooldridge (2019, C-4b p. 725) for a short introduction to maximum likelihood

estimation.

Let X1, . . . , Xn be some data from a distribution with pdf of pmf fθ(x). Here, θ is an

unknonwn parameter, or an unknown vector of parameters, that we want to use the data

to say something about. It is not obvious how we should use X1, . . . , Xn to say something

about θ, in other words, it is not obvious how we should construct an estimator, say

θ̂n = θ̂n(X1, . . . , Xn), that estimates θ.

Maximum likelihood estimation provides a procedure for deriving estimators in problems

where one is given a statistical model with some unknown parameter. Let f jointθ (x1, . . . , xn)

be the joint pdf or pmf of X1, . . . , Xn. The likelihood function is

Ln(θ) = f jointθ (x1, . . . , xn)

When the data X1, . . . , Xn are independent – which we will almost always assume – then

the likelihood function is

Ln(θ) = f jointθ (x1, . . . , xn) = fθ(x1) · · · fθ(xn),

The likelihood function is a function of θ, when the data is held constant. This means

that for different samples of data, you’ll get different likelihood functions. The maximum

likelihood estimator, which we denote by θ̂n, is the maximiser of Ln(θ). That θ̂n maximises

Ln(θ) means that

Ln(θ̂n) ≥ Ln(θ) for all θ.

Since products are difficult to work with, we instead work with the log-likelihood function.

It is simply the natural logarithm of Ln(θ), that is

`n(θ) = logLn(θ) =
n∑
i=1

log fθ(xi),

where we in the last equality assume that the data are independent. From now on, we

assume that X1, . . . , Xn are independent from fθ(x). The maximiser of the log-likelihood

function `n(θ) is also the maximiser of the likelihood function Ln(θ). As said, the likelihood

function will change from sample to sample, and so will the log-likelihood function. When

deriving estimators it is therefore natural to consider the log-likelihood function as a

random variable (but we still write `n(θ)), that is

`n(θ) =
n∑
i=1

log fθ(Xi).

Example 3.1. Let fθ(x) = θxθ−1 for x ∈ [0, 1], and f(x) = 0 for x outside of [0, 1], where

θ > 0. Suppose that X1, . . . , Xn are i.i.d. with pdf f(x). The log of fθ(x) is

log fθ(x) = log(θ) + (θ − 1) log x.
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Figure 3. The log-likelihood function for three different samples

X1, . . . , X40 from the distribution with density fθ(x) = θxθ−1 for x ∈ [0, 1],

and f(x) = 0 for x outside of [0, 1], where θ > 0. The vertical lines indicates

the different maxima of the functions.

Then

`n(θ) =

n∑
i=1

log fθ(Xi) =

n∑
i=1

{log(θ) + (θ − 1) logXi}

= n log θ + (θ − 1)

n∑
i=1

logXi.

To find the maximum of `n(θ) we differentiate with respect to θ and set the derivative

equal to zero,

d

dθ
`n(θ) =

n

θ
+

n∑
i=1

logXi = 0. (15)

To check that the solution to this equation is indeed a global maximum, we can perform

a second derivative test,
d2

dθ2
`n(θ) = − n

θ2
< 0,

for all θ. This means that the solution to d`n(θ)/dθ = 0 is a global maximum, in other

words, the function `n(θ) is everywhere concave. From (15) we see that the maximiser of

`n(θ) is

θ̂n = − n∑n
i=1 logXi

.

This is the maximum likelihood estimator (MLE) in this problem.

In Figure 3 I have plotted the log-likelihood function for three simulated samples of

size n = 40 from the density fθ(x). The vertical lines indicates the maxima of the three

functions. Notice how the log-likelihood function changes from sample to sample, and
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consequently, so does the maximum likelihood estimate. Here is the Matlab-script I used

to simulate the data and make the figure.

theta = 2.34

n = 40;

for sims=1:3

u = rand(n,1); % random uniform rv’s on [0,1]

x = u.^(1/theta);

theta_seq = linspace(0.01,8,10^3)

% the log-likelihood function

ll_n = n*log(theta_seq) + (theta_seq - 1)*sum(log(x));

plot(theta_seq,ll_n,’LineWidth’, 2)

theta_hat = -n/sum(log(x))

line([theta_hat,theta_hat],[-175,max(ll_n)],’LineWidth’, 1.414)

hold on

end

saveas(gcf,"~/your_path/loglik3.eps","epsc");

4. Lecture 4, September 14, 2020

See Wooldridge (2019, C-3a p. 721) for consistency of estimators, convergence in prob-

ability, and the Law of large numbers. What Wooldridge (2019) calls Property PLIM.1

and PLIM.2 will be covered in Lecture 5.

Recall that a sequence of real numbers (xn)n≥1 = (x1, x2, x3, . . .) is said to converge to

a number x if for any given ε > 0 we can find a number N ≥ 1 such that

|xn − x|< ε, for all n ≥ N.

Here is an example: The sequence xn = 1/n converges to zero. Suppose we are given

ε = 1/100, then we can counter with N = 101, for certainly

|xn − x|= |1/n|< 1/100 = ε, for all n ≥ 101.

We can also formulate this as follows: That xn converges to x as n → ∞ means that we

can find an N ≥ 1 such that the set

{n ≥ N : |xn − x|≥ ε} = ∅.

Convergence in probability concerns sequences of random variables, say (Xn)n≥1 =

(X1, X2, X3, . . .), and ‘translates’ the notion of convergence to a probabilistic statement.

Suppose we want to show that Xn converges to a in a probabilistic sense. Instead of asking

for an N ≥ 1 such that |Xn − a|< ε for all n ≥ N , we instead ask for an N ≥ 1 such

that the probability of some Xn for n ≥ N being more than ε away from a can be made

arbitrarily small. Here is the definition.



LECTURE NOTES 19

Definition 4.1. A sequence of random variables (Xn)n≥1 converges in probability to a

constant a if for any given ε > 0

Pr(|Xn − a|≥ ε)→ 0, as n→∞,

we write

Xn
p→ a, as n→∞,

to indicate convergence in probability of Xn to a.

Another way to say this is: (Xn)n≥1 converges in probability to a if for any given ε > 0

and δ > 0, we can find N ≥ 1 such that

Pr(|Xn − a|≥ ε) < δ, for all n ≥ N.

The typical sequences of random variables that we will meet in this course are sequences

of estimators. Say you want to estimate the mean µ of normal distribution. You sample

X1, . . . , Xn and form the empirical mean X̄n = (1/n)
∑n

i=1Xi and use this as your esti-

mator. Now, for increasing sample size, (X̄n)n≥1 is a sequence of random variables, and

you want to prove that X̄n gets close to µ as the sample size n increases.

A very useful inequality when trying to prove that a given sequence of random variables

converges in probability to something is Chebyshev’s inequality.

Lemma 4.2. (Chebyshev’s inequality). Let X be a random variable with expectation

EX = µ and variance VarX = σ2. Then for any given ε > 0

Pr(|X − µ|≥ ε) ≤ σ2

ε2
.

Proof. Recall from the definition VarX = E (X − µ)2. Assume that X has pdf. f(x) and

recall that f(x) ≥ 0.

σ2 = VarX = E (X − µ)2 =

∫ ∞
−∞

(x− µ)2f(x) dx

=

∫
|x−µ|≥ε

(x− µ)2f(x) dx+

∫
|x−µ|<ε

(x− µ)2f(x) dx

≥
∫
|x−µ|≥ε

(x− µ)2f(x) dx ≥
∫
|x−µ|≥ε

ε2f(x) dx

= ε2
∫
|x−µ|≥ε

f(x) dx = ε2 Pr(|X − µ|≥ ε),

where in the last equality we use eq. (12). �

Theorem 4.3. Let X1, . . . , Xn be i.i.d. random variables with expectation µ and variance

σ2, and let X̄n = (1/n)
∑n

i=1Xi the empirical mean. Then

X̄n
p→ µ, as n→∞.

Proof. Use Chebyshev’s inequality. In class or as homework. �
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5. Lecture 5, September 21, 2020

Relevant reading is Wooldridge (2019) Sections C-3a and C3-b, pp. 721–724.

Recall that a sequence of random variables (Xn)n≥1 converges in probability to a con-

stant a if for any ε > 0,

Pr(|Xn − a|≥ ε)→ 0,

or, equivalently, if

Pr(|Xn − a|< ε)→ 1,

as n→∞. Why are these two equivalent?

A function g(x) is continuous at x if for any ε > 0 we can find δ > 0 such that

|x− y|< δ implies |g(x)− g(y)|< ε.

A function that is continuous at every point x in some interval of the real line, is continuous

on this interval. One can think of a continuous function as a “function that you can graph

without lifting your pencil from the paper” (Wooldridge, 2019, p. 722). Here are some

continuous function: g(x) = a+bx for constant a and b, g(x) = x2, g(x) = 1/x, g(x) =
√
x,

g(x) = log(x), g(x) = exp(x). Also, a composition of continuous function is a continuous

function. For example, the function h(x) = exp(a+ bx) is continuous. The next lemma is

called Property PLIM.1 in Wooldridge (2019, p. 722). Note that Wooldridge (2019) writes

plim(Xn) = a when I write Xn →p a.

Lemma 5.1. (Prop. PLIM.1) Let Xn be a sequence of rv’s and a a constant. If Xn →p a

and g(x) is a continuous function, then g(Xn)→p g(a).

Proof. Since g(x) is continuous we know that for any ε > 0 we can find δ > 0 such that

|x− a|< δ implies |g(x)− g(a)|< ε. In terms of events, this means that for any ε > 0 we

can find δ > 0 such that

{|Xn − a|< δ} ⊂ {|g(Xn)− g(a)|< ε}.

By Proposition 1.3(f), this means that

Pr(|Xn − a|< δ) ≤ Pr(|g(Xn)− g(a)|< ε).

By Proposition 1.3(b) Pr(|g(Xn)−g(a)|< ε) ≤ 1, and by assumption Pr(|Xn−a|< δ)→ 1,

so since Pr(|g(Xn)− g(a)|< ε) is squeezed in between, Pr(|g(Xn)− g(a)|< ε)→ 1. �

The next lemma is called Property PLIM.2 in Wooldridge (2019, p. 723).

Lemma 5.2. (Prop. PLIM.2) Assume that (Xn)n≥1 and (Yn)n≥1 are sequences of ran-

dom variables, that a and b are constants, and that Xn →p a and Yn →p b. Then

(i) Xn + Yn →p a+ b;

(ii) XnYn →p ab;

(iii) Xn/Yn →p a/b provided b 6= 0.
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Remark 5.3. A sequence of numbers (bn)n≥1 that converges to a constant b in the sense

discussed at the start of this lecture, also converges in probability to b. Thus, if Xn →p a,

and bn → b, then it follows from Lemma 5.2(i) that Xn + bn →p a+ b; from Lemma 5.2(ii)

that Xnbn →p ab; and from Lemma 5.2(iii) that Xn/bn →p a/b, provided b 6= 0. For

example, if Xn →p a, then Xn/n→p 0.

Proof. (of Lemma 5.2). We will prove (i), the rest is in Homework 5. We want to prove

that for any given ε > 0,

Pr(|Xn + Yn − (a+ b)|≥ ε)→ 0.

We have

|Xn + Yn − (a+ b)|= |(Xn − a) + (Yn − b)|≤ |Xn − a|+|Yn − b|,

by the triangle inequality. In terms of events, this means that

{|Xn + Yn − (a+ b)|≥ ε} ⊂ {|Xn − a|+|Yn − b|≥ ε},

so by Prop. 1.3(f) it is sufficient to show that Pr(|Xn − a|+|Yn − b|≥ ε)→ 0, since

0 ≤ Pr(|Xn + Yn − (a+ b)|≥ ε) ≤ Pr(|Xn − a|+|Yn − b|≥ ε).

Given ε > 0 and for n = 1, 2, . . ., defined the event

An = {|Xn − a|+|Yn − b|≥ ε}
Bn = {|Yn − b|≥ ε/2},

so that Bc
n = {|Yn − b|< ε/2}. We now want to show that Pr(An) → 0. By the Law of

total probability (see hw1 Ex. 4(b)), and using that Pr(An | Bn)Pr(Bn) ≤ Pr(Bn), we get

Pr(An) = Pr(An ∩Bn) + Pr(An ∩Bc
n) = Pr(An | Bn)Pr(Bn) + Pr(An ∩Bc

n)

≤ Pr(Bn) + Pr(An ∩Bc
n).

Here Pr(Bn) = Pr(|Yn − b|≥ ε/2) → 0 by assumption, so we now only need to show that

Pr(An ∩ Bc
n) → 0. But when |Yn − b|≥ ε/2, which it is in the intersection An ∩ Bc

n, then

|Xn − a|+|Yn − b|≤ |Xn − a|+ε/2. Therefore,

An ∩Bc
n = {|Xn − a|+|Yn − b|≥ ε} ∩ {|Yn − b|< ε/2}
⊂ {|Xn − a|+ε/2 ≥ ε} ∩ {|Yn − b|< ε/2}
⊂ {|Xn − a|+ε/2 ≥ ε},

where for the last inequality we use that for any two event A and B, A∩B ⊂ A (and also

A∩B ⊂ B), draw a Venn diagram. But this shows that Pr(An∩Bc
n) ≤ Pr(|Xn−a|≥ ε/2),

and in summary

0 ≤ Pr(|Xn − a|+|Yn − b|≥ ε) ≤ Pr(|Xn − a|≥ ε/2) + Pr(|Yn − b|≥ ε/2),

where the sum on the right tends to zero by assumption. �
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Convergence in distribution. We now turn to another form of convergence of random

variables. Let X1, X2, . . . be a sequence of random variables, and F1, F2, . . . the corre-

sponding sequence of cumulative distributions functions, that is Fi(x) = Pr(Xi ≤ x) for

i = 1, 2, . . .. Let X be a random variable with cdf F (x) = Pr(X ≤ x). We say that Xn

converges in distribution to X, and write

Xn
d→ X,

if, as n→∞,

Fn(x)→ F (x),

for all points x at which F (x) is continuous.

Example 5.4. (Don’t spend much time on this example. I included it to show that a

limiting distribution is not always normal. See hw5 Ex. 4 for another non-normal limit

distribution.) For each n = 1, 2, . . . let Xn be a random variable that takes its values in

{1/n, 2/n, . . . , (n− 1)/n, 1},

with equal probability, i.e. Pr(Xn = j/n) = 1/n for j = 1, . . . , n. Recall that if X

is a random variable with the uniform distribution on [0, 1], then its cdf is F (x) = x

for x ∈ [0, 1], F (x) = 0 for x < 0 and F (x) = 1 for x > 1 (see hw2 Ex. 7). For

x ∈ {1/n, 2/n, . . . , (n− 1)/n, 1}, the cdf of Xn is

Fn(x) =

bnxc∑
j=1

1

n
=
bnxc
n

,

where byc = max{m ∈ {0, 1, 2, . . .} | m ≤ y} is called the floor function. Let frac(y) be

the fraction part of y, for example frac(2.34) = 0.34, so that frac(y) = y−byc, for example

0.34 = frac(2.34) = 2.34 − b2.34c = 2.34 − 2. This means that, 0 ≤ frac(y) < 1 for all y.

We can write

Fn(x) =
bnxc
n

=
nx+ frac(nx)

n
= x+

frac(nx)

n
→ x,

as n→∞, which means Xn →d X, where X is a uniform random variable on [0, 1].

The central limit theorem. There are several central limit theorems, so the ‘the’ in

the header is not that precise, but I’ll use it anyways. We have seen that Xn →d X means

that Fn(x)→ F (x), with Xn ∼ Fn for n = 1, 2, . . ., and X ∼ F . The central limit theorem

(CLT) concerns cases where the limiting cdf F of the sequence of cdf’s (Fn)n≥1 is that

of a normal distribution. Since the normal distribution, and in particular the standard

normal distribution appears so often, we reserve special symbols for its pdf and its cdf: If

Z ∼ N(0, 1), then its pdf is

φ(z) =
1√
2π

exp(−z2/2), z ∈ (−∞,∞),

and its cdf is

Φ(z) = Pr(Z ≤ z) =

∫ z

−∞
φ(x) dx.
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As an exercise, suppose that X ∼ N(µ, σ2) so that X has cdf

Fµ,σ(x) =

∫ x

∞

1√
2πσ

exp{−(y − µ)2

2σ2
}dy.

Show that

Fµ,σ(x) = Φ
(x− µ

σ

)
,

and that
X − µ
σ

∼ N(0, 1).

The next theorem can be found in Wooldridge (2019, p. 724).

Theorem 5.5. (Central limit theorem). Let X1, X2, . . . be i.i.d. random variables

with expectation E [X1] = µ and variance Var(X1) = σ2, and set X̄n = (1/n)
∑n

i=1Xi.

Define

Zn =

√
n(X̄n − µ)

σ
.

Then

Zn
d→ Z, where Z ∼ N(0, 1).

In other words, if Zn ∼ Fn(z) for n = 1, 2, . . ., then

Fn(z)→ Φ(z), for each z.

Why does it matter? Notice that the only assumptions we make about the X1, X2, . . .

in the theorem are that they are independent, identically distributed, and that they have

an expectation and a variance. We do not say anything more about their distribution. For

example, if we were asked to compute the probabilities Pr(X1 ≤ x), or Pr(Z23 ≤ z), we

would be at loss. The CLT, however, tells us that for n sufficiently large (what ‘sufficiently

large’ means can often be checked by way of simulations)

Pr(Zn ≤ z) ≈ Φ(z) =

∫ z

−∞

1√
2π

exp(−x2/2) dx,

and the integral on the right we can compute. Here is a command computing Φ(1.96) in
Matlab

normcdf(1.96,0,1)

So if you want to compute Pr(−1.96 ≤ Zn ≤ 1.96), use that (see hw1, Ex. 11)

Pr(−1.96 ≤ Zn ≤ 1.96) = Pr(Zn ≤ 1.96)− Pr(Zn ≤ −1.96),≈ Φ(1.96)− Φ(−1.96)

for n sufficiently large, then go to Matlab and type

normcdf(1.96,0,1) - normcdf(-1.96,0,1)

to get 0.95. The inverse of the normal cdf Φ−1(p) also exists in Matlab, for example

norminv(0.975,0,1)

returns 1.96, and norminv(normcdf(1.96,0,1),0,1) also returns 1.96, etc.
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Family Father Mother Gender Height Kids

1 78.5 67 M 73.2 4

1 78.5 67 F 69.2 4

1 78.5 67 F 69 4

1 78.5 67 F 69 4

2 75.5 66.5 M 73.5 4

2 75.5 66.5 M 72.5 4

2 75.5 66.5 F 65.5 4

2 75.5 66.5 F 65.5 4

3 75 64 M 71 2

3 75 64 F 68 2

4 75 64 M 70.5 5

4 75 64 M 68.5 5

4 75 64 F 67 5

4 75 64 F 64.5 5

4 75 64 F 63 5

5 75 58.5 M 72 6

5 75 58.5 M 69 6
Table 1. A subset of the Galton height data set. The full dataset contains

898 rows, and 197 families. Heights are given in inches: one inch = 2.54 cm.

The full data set is available from many websites, including the Harvard

dataverse website, where I found it.

6. Lecture 6, September 28, 2020

Relevant reading is Wooldridge (2019) Sections 2.1–2.6 on regression analysis.

Suppose we have a dataset with two measurements on n units (individuals, families, firms,

stocks, schools, or whatever unit you like to think of). Table 1 gives the first few rows

of a famous dataset collected by Francis Galton in England in the 1880’s. I found it on

the Harvard dataverse website, you can also read more about, and look at photos of the

original dataset here. The dataset contains the heights (in inches) of mothers, fathers,

and their children. In all there are 898 rows (thus 898 mother, father, child triplets), and

197 families. The full dataset is available on Itslearning in the file galton.txt. Since the

data include multiple children per family, the variable Family is a family ID variable; the

variable Father is the height of the father; the variable Mother is the height of the mother;

Gender is gender; Height is height; and Kids is the number of children the family has.

In Figure 4 I have plotted the heights of all n = 433 mother–daughter pairs. It is natural

to think that the height of your mother influences your height, or, more mathematically

speaking, that your height is a function of your mothers height. At the same time, however,

there are clearly many other factors that also influences the height of a daughter. A

model that captures such a ‘non-perfect’ or non-deterministic relation between the height

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/T0HSJ1
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/T0HSJ1
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/T0HSJ1
http://www.medicine.mcgill.ca/epidemiology/hanley/galton/
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Figure 4. All mother–daughter pairs in the Galton height datasets.

of mothers and the height of their daughters is the following:

Yi = β0 + β1xi + εi, for i = 1, . . . , n, (16)

where ε1, . . . , εn are i.i.d. random variables with E [ε1] = 0 and Var(ε1) = σ2; and

Yi = Height of daughter i,

xi = Height of mother i,

for i = 1, . . . , n, where we x1, . . . xn are fixed numbers; and β0 and β1 are unknown

regression coefficients, or parameters. The xi’s are variously called independent variables,

covariates, features, and surely others things as well. The Yi’s are called the dependent

variables, the outcome, and also other things.

Notice that each Yi is a function of the random variable εi, hence itself a random

variable. It follows from Proposition 2.3 that for each i,

E [Yi] = E [β0 + β1xi + εi] = β0 + β1xi + E [εi] = β0 + β1xi,

thus we see that the intercept β0 is the expected value of Yi when xi = 0, and that the

slope β1 is the expected increase in Yi with a one unit increase in xi.

In terms of the n = 433 mother–daughter pairs in Figure 4, let’s have a close look at the

assumptions we are making when postulating the model in (16) (these are what Wooldridge

(2019, pp. 40–) calls SLR.1–SLR.5. Make drawings, and make sure you understand these.

(i) Linear in parameters. The function y(x) = β0 + β1x is on average the correct

way to describe the relation between the height a daughter and the height of her

mother;
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(ii) Random sampling. The noise terms ε1, . . . , εn are independent, meaning that

the height of the ith daughter does not tell us anything about the height of the

jth daughter (i 6= j);

(iii) Sample variation in the explanatory variable. The x1, . . . , xn are not all the

same. If all the mothers were of the same height, mothers height couldn’t possibly

create variation in the height of the daughters.

(iv) Zero conditional mean. The error terms ε1, . . . , εn have expectation zero no

matter the value of xi. The other factors influencing the height of a daughter

cancels out on average, no matter the height of the mother.

(v) Homoskedasticity. Is the Var(εi) = σ2 for all i assumption: The variance of the

error terms are the same no matter where you are on the x-axis. How much the

height of a daughter might deviate from her expected height E [Height of daughter] =

β0 + β1Height of mother, is the same not matter the height of the mother.

As we go along, we will see when these assumptions are important. The parameters β0,

β1, and σ2 are in most, if not all, real world applications unknown, so we need to estimate

these from the data

(x1, Y1), . . . , (xn, Yn).

Since the model in (16) postulates that the relation between the xi’s and the Yi’s is a line,

we can ask for the line that best fits the data. What is natural to consider a good line, is a

line that makes the distance between each Yi and β0 + β1xi small. We don’t care whether

our point β0 +β1xi is below or above Yi, so we square the distances Yi− (β0 +β1xi). Make

a drawing! The least squares estimators are the minimisers of the function

g(β0, β1) =
n∑
i=1

{Yi − (β0 + β1xi)}2.

We denote the least squares estimators by β̂0 and β̂1, thus

g(β̂0, β̂1) ≤ g(β0, β1), for all β0, β1.

To find these we take the partial derivatives with respect to β0 and β1, and set these

expressions equal to zero. This gives two equations in two unknowns,

∂

∂β0
g(β0, β1) = −2n(Ȳn − β0 − β1x̄n) = 0,

∂

∂β1
g(β0, β1) =

n∑
i=1

(xi − x̄n)(Yi − Ȳn)− β1
n∑
i=1

(xi − x̄n)2 = 0,

where Ȳn = (1/n)
∑n

i=1 Yi and x̄n = (1/n)
∑n

i=1 xi. The solution to these equations are

β̂0 = Ȳn − β̂1x̄n, and β̂1 =

∑n
i=1(xi − x̄n)(Yi − Ȳn)∑n

i=1(xi − x̄n)2
.

These are the least squares estimators. Each time we see an estimator, or construct a

new estimator, there we should ask several questions, some of which are: (i) What is the

expectation if the estimator? Is it biased or unbiased; (ii) What is the variance of the

estimator? (iii) Is the estimator consistent? (iv) What is the distribution, or approximate
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distribution of the estimator? In hw6 Ex. 1 you are asked to find the expectation and

variance of β̂0 and β̂1.

Fitted values. What we refer to as the estimated line, or fitted line of a regression, is

the line

(x, β̂0 + β̂1x).

The quantities

Ŷi = β̂0 + β̂1xi, for i = 1, . . . , n,

are referred to as the fitted values, or predicted values. They are our estimates of E [Yi] =

β0 + β1xi for i = 1, . . . , n.

Residuals. When we are to draw conclusion about the real world using a the model in

(16) (or any statistical model, for that matter), our conclusions are only valid as long as our

assumptions are valid. It is therefore important to try to assess whether the assumptions

hold. Plotting the residuals can help. The residuals from fitting a regression are the

ui = Yi − Ŷi, for i = 1, . . . , n.

Since εi = Yi−(β0+β1xi), the residuals can be viewed as estimates of the error terms. And

since the error terms have expectation zero and constant variance (the Homoskedasticity

assumption), so should the u1, . . . , un if the model is any good.

Let’s look at the residuals in a case where we know that the Assumptions (i)–(v) hold,

and in a case where one or more of them is broken. To do this, we simulate data.

Example 6.1. (Residuals when assumptions hold). To simulate data from the
model in (16) we need to make an extra assumption about the error terms ε1, . . . , εn.
In addition to the assumptions already made, we will assume that they are normally
distributed.

cd("your path")

n = 400;

beta0 = -0.543; beta1 = 2.345;

x = linspace(0,1,n);

sigma2 = 1.234

eps = normrnd(0,sqrt(sigma2),1,n);

y = beta0 + beta1.*x + eps;

scatter(x,y)

beta1hat = sum((x - mean(x)).*y)/sum((x - mean(x)).^2)

beta0hat = mean(y) - beta1hat*mean(x)

yhat = beta0hat + beta1hat.*x; % The fitted values

u = y - yhat; % The residuals

scatter(x,u)

hold on

plot([0,1],[0,0],"Color","g","Linewidth",2)

xlabel("x");ylabel("Residuals")
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Figure 5. The nice residuals simulated in Example 6.1.
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Figure 6. The bad residuals simulated in Example 6.2.

saveas(gcf,"your path/niceresid.eps","epsc")

The residuals are plotted in Figure 5. Notice how they are centered around zero for all

values of x, and how their spread around zero is the about the same for all values of x.

Example 6.2. (Residuals when Assumption (v) is broken). In this simulation ex-

ample we are going to break Assumption (v), namely the assumption of homoskedasticity.

We do this by taking the variance to be a function of the independent variable. Here, we’ll

take

σ2(x) = 1.234 exp(3x).

This is the only modification we do to the Matlab script in Example 6.1. The residuals

from one such simulation are plotted in Figure 6. Notice how the spread of the residuals

around the green line at zero (their expectation) increases as x increases.
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7. Lecture 7, October 5, 2020

In addition to the relevant reading for last week, Wooldridge (2019) Sections 2.1–2.6,

which is still relevant, please look at Wooldridge (2019) Sections 3.1–3.3, and Math Re-

freshers (Appendices) C-5 and C-6 on interval estimation and confidence intervals and

hypothesis testing, respectively.

The normal distribution (Parts of this is repetition from Lecture 5). We write X ∼
N(a, b2) when X is a normally distributed random with a normal expectation E [X] = a

and variance Var(X) = b2. The pdf of X is

fa,b(x) =
1√
2πb

exp
{
− (x− a)2

2b2
}
, x ∈ (−∞,∞),

and its cdf is

Fa,b(x) =

∫ x

−∞
fa,b(y) dy,

for all x. If Z ∼ N(0, 1), we say that Z has the standard normal distribution, and reserve

special symbols for its pdf and cdf,

φ(z) =
1√
2π

exp(−z2/2), and Φ(z) =

∫ z

−∞
φ(y) dy.

So in terms of the fa,b(x) just above, φ(x) = f0,1(x).

Lemma 7.1. If X ∼ N(a, b2), then

X − a
b
∼ N(0, 1).

Proof. We use the symbols just introduced.

Pr
(X − a

b
≤ z
)

= Pr(X ≤ bz + a) = Fa,b(bz + a)

=

∫ bz+a

−∞

1√
2πb

exp
{
− 1

2

(y − a
b

)2}
dy =

∫ z

−∞

1√
2πb

exp(−w2/2) bdw

=

∫ z

−∞

1√
2π

exp(−w2/2) dw = Φ(z),

where we used the substitution w = (y−a)/b so that dx = bdw. This shows that the cdf of

(X−a)/b is Φ(z), which means that (X−a)/b is a standard normal random variable. �

Here is a lemma that we will not prove, but use very often.

Lemma 7.2. Let X1, . . . , Xn be independent random variables with distributions N(ai, b
2
i )

for i = 1, . . . , n, i.e. X1 ∼ N(a1, b
2
1), and so on. Let γ1, . . . , γn and η be constants (not

random variables), then

n∑
i=1

γiXi + η ∼ N
( n∑
i=1

γiai + η,
n∑
i=1

γ2i b
2
i

)
.

Proof. Not part of the curriculum. �
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As an exercise, you can try to deduce Lemma 7.1 from Lemma 7.2.

Example 7.3. Let X1, . . . , Xn be i.i.d. N(µ, σ2), then Lemma 7.2 entails that

X̄n =
1

n

n∑
i=1

Xi ∼ N(µ, σ2/n),

and if we combine this with Lemma 7.1, we get that
√
n(X̄n − µ)

σ
∼ N(0, 1).

Example 7.4. Consider the regression model

Yi = β0 + β1xi + εi, for i = 1, . . . , n,

where ε1, . . . , εn are i.i.d. N(0, σ2), and x1, . . . , xn are constants, not all equal. Then

Lemma 7.2 combined with hw6 Ex. 1(g) gives that the least squares estimator

β̂1 =

∑n
i=1(xi − x̄n)(Yi − Ȳn)∑n

i=1(xi − x̄n)2
∼ N

(
β1,

σ2∑n
i=1(xi − x̄n)2

)
.

The standard error of β̂1 is the square root of its variance, we write

se(β̂1) =
σ

{
∑n

i=1(xi − x̄n)2}1/2

From Lemma 7.1 we have that

β̂1 − β1
se(β̂1)

∼ N(0, 1). (17)

so that

Pr
( β̂1 − β1

se(β̂1)
≤ z) = Φ(z).

This is a key result when we construct confidence intervals for β1, and derive tests for

hypotheses about β1.

If in the model of Example 7.4 the errors ε1, . . . , εn are i.i.d. with E [ε1] = 0 and

Var(ε1) = σ2, but we do not assume that they are normally distributed, then the least

squares estimator β̂1 does not have a normal distribution. In particular, (17) is not true.

It does, however, have expectation E [β̂1] = β1 and variance Var(β̂1) = σ2/
∑

i=1(x− x̄n)2.

Fortunately, the relation in (17) is approximately true, thanks to the a central limit

theorem. The next theorem is not in itself part of the curriculum, but you should know

about what it says about the approximate distribution of least squares estimators.

Theorem 7.5. (The Lindeberg–Lévy central limit theorem). Let X1, . . . , Xn be

independent random variables with expectation 0 and variances σ21, . . . , σ
2
n, and set B2

n =∑n
i=1 σ

2
i . Then

1

Bn

n∑
i=1

Xi
d→ N(0, 1),
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as n → ∞, provided the Lindeberg condition is satisfied. This conditions says that, for

any δ > 0,

1

B2
n

n∑
i=1

E
[
X2
i I{|Xi|≥ δBn}

]
→ 0,

as n→∞.

Proof. The proof is not part of the curriculum. If you are interested, you can look at a

proof I wrote for a course I taught last year (Stoltenberg, 2019). �

Notice that the random variables X1, . . . , Xn in this theorem are required to be in-

dependent, but not identically distributed. This is the difference between this theorem

and Theorem 5.5, where the random variables are i.i.d. (independent and identically dis-

tributed).

Consider again the regression model

Yi = β0 + β1xi + εi, for i = 1, . . . , n,

where ε1, . . . , εn are i.i.d. with E [ε1] = 0 and Var(ε1) = σ2. If we had assumed that

the ε1, . . . , εn were normal, Lemma 7.2 would give that β̂1 ∼ N(0, σ2/{
∑n

i=1(xi − x̄n)2}),
where β̂1 is the least squares estimator. But we do not assume that the errors are normal!

To proceed with inference on β1 (confidence intervals, tests, etc.) we would like to use a

central limit theorem to approximate the distribution of β̂1. If we define

ai =
xi − x̄n∑

i=1(xi − x̄n)2
, for i = 1, . . . , n,

we can write

β̂1 − β1 =
n∑
i=1

aiεi,

Thus, the difference β̂1 − β1 is equal to the sum of the random variables,

a1ε1, . . . , anεn.

These are independent, but since

Var(aiεi) = a2iσ
2 =

(xi − x̄n)2σ2

{
∑n

j=1(xj − x̄n)2}2
,

they are not identically distributed (this variance depends on the index i). This is why we

need the Lindeberg-Lévy central limit theorem, and not merely Theorem 5.5, to get a an

approximation to the distribution of the least squares estimator β̂1. Let

B2
n =

n∑
i=1

Var(aiεi) = σ2
n∑
i=1

a2i =
σ2∑n

j=1(xj − x̄n)2
.

Then Theorem 7.5 says that

1

Bn
(β̂1 − β1)

d→ N(0, 1), (18)

https://www.uio.no/studier/emner/matnat/math/STK4090/v20/lindebergclt_mgf.pdf
https://www.uio.no/studier/emner/matnat/math/STK4090/v20/lindebergclt_mgf.pdf
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as n→∞, provided the Lindeberg condition holds. You do not need to worry about this

condition in this course, but it does not hurt to know that here, the condition is satisfied

as long as
maxi≤n |xi − x̄n|∑n

i=1(xi − x̄n)2
→ 0,

as n→∞, meaning that no covariate value is too different from the others, and thus none

of the random variables aiεi has a variance that is much larger than the variance of the

others.

The result in (18) is extremely important, for it is this result that allows us to use the

approximation

Pr
( β̂1 − β1

se(β̂1)
≤ z
)
≈ Φ(z), (19)

when n is large, where se(β̂1) = σ/{
∑n

i=1(xi − x̄n)2)}1/2. As we will soon see (in Lec-

ture 8, perhaps), this approximation is still valid when we replace se(β̂1) by an estimator,

σ̂n/{
∑n

i=1(xi − x̄n)2}, where σ̂n is an estimator of σ.

The approximation in (19) allows us to build confidence intervals and perform tests for

β1. For example, let

zα/2 = Φ−1(α/2), and z1−α/2 = Φ−1(1− α/2),

where α is the your chosen significance level, and

zα/2 = −z1−α/2,

by the symmetry of the normal distribution. Often α = 0.05, in which case

z0.025 = −1.96 = Φ−1(0.025) = Φ−1(α/2), and z0.975 = 1.96 = Φ−1(0.975) = Φ−1(1−α/2).

You can find these numbers by typing norminv(0.025,0,1) and norminv(0.975,0,1) in

Matlab. Then (using hw 1, Ex. 11),

Pr
(
− z1−α/2 ≤

β̂1 − β1
se(β̂1)

≤ z1−α/2
)

= Pr
( β̂1 − β1

se(β̂1)
≤ z1−α/2

)
− Pr

( β̂1 − β1
se(β̂1)

≤ −z1−α/2
)

≈ Φ(z1−α/2)− Φ(−z1−α/2) = Φ(z1−α/2)− Φ(zα/2)

= 1− α/2− α/2 = 1− α,

which is equal to 0.95 when α = 0.05. This means that

Pr
(
−z1−α/2 ≤

β̂1 − β1
se(β̂1)

≤ z1−α/2
)

= Pr
(
β̂1+zα/2 se(β̂1) ≤ β1 ≤ β̂1+z1−α/2 se(β̂1)

)
≈ 1−α,

So if σ is known – which it rarely, if ever, is – then[
β̂1 + zα/2 se(β̂1), β̂1 + z1−α/2 se(β̂1)

]
is an approximate (1− α)× 100 percent confidence interval for β1. In actual applications,

you will need to estimate σ, but the approximate inequalities above do still hold, so[
β̂1 + zα/2 ŝe(β̂1), β̂1 + z1−α/2 ŝe(β̂1)

]
,
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is also an approximate (1−α)×100 percent confidence interval for β1, where ŝe(β̂1) is our

estimator of se(β̂1), that is

se(β̂1) =
σ

{
∑n

i=1(xi − x̄n)2}1/2
, and ŝe(β̂1) =

σ̂n

{
∑n

i=1(xi − x̄n)2}1/2

where σ̂n is a consistent estimator for σ, typically σ̂n is the square root of

σ̂2n =
1

n

n∑
i=1

(Yi − β̂0 − β̂1xi)2,

or its unbiased version, see hw6, Ex. 2(e).

As another, but closely related, example of the use of the approximation in (19), say

you want to test the hypotheses,

H0 : β1 = 0 vs. HA : β1 6= 0.

A natural test is to reject H0 if

β̂1 ≤ −cn or β̂1 ≥ cn, (20)

for some cn > 0, where cn is chosen so that

Pr(Type I error) ≈ α,

where α is the significance level (that you set!). Then, assuming that H0 is true (that is,

assuming that β1 = 0),

Pr(Type I error) = PrH0(β̂1 ≤ −cn or β̂1 ≥ cn)

= PrH0(β̂1 ≤ −cn) + {1− PrH0(β̂1 ≤ cn)}

= PrH0

( β̂1

se(β̂1)
≤ − cn

se(β̂1)

)
+ {1− PrH0

( β̂1

se(β̂1)
≤ cn

se(β̂1)

)
}

≈ Φ
(
− cn

se(β̂1)

)
− {1− Φ

( cn

se(β̂1)

)
} = α,

where the approximate inequality stems from (19), and the last equality is true provided

cn = Φ−1(1− α/2) se(β̂1).

(The comment made above about estimating se(β̂1) applies here as well.) This means that

the test in (20), with the appropriately chosen cn, is a test for H0 at approximately the

α× 100 percent significance level.
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8. Lecture 8, October 12, 2020

In this lecture we will study regression models with more than one independent variable.

Say we have data

(x1,1, x1,2, Y1), . . . , (xn,1, xn,2, Yn),

from n individuals (schools, firms, stocks, etc.), and we postulate the model

Yi = β0 + β1xi,1 + β2xi,2 + εi, for i = 1, . . . , n,

where ε1, . . . , εn are independent random variables with expectation zero and variance σ2,

and x1,1, . . . , xn,1, x1,2, . . . , xn,2 are independent variables. Relevant reading for this lecture

is Sections 3.1–3.4, and Section 4.1–4.5 in Wooldridge (2019). Also take a look at Math

Refreshers B4-e, B4-f, and B4-g, on conditional expectation, properties of conditional

expectation, and conditional variance, respectively (Wooldridge, 2019, pp. 700–704).
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